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1 Twisted Group Algebras & Group Cohomology

Further in this chapter, we will look at group extensions of a group G by an abelian group Z,

which is endowed with a G-action. The parametrisation of these group extensions is given

by the second cohomology group H2pG;Zq - we will define the cohomology groups H1pG;Zq

and H2pG;Zq in a different light, then show canonical equivalence of these definitions.

Given a group G, field k, and some map α : G ˆ G Ñ kˆ, we can define the group algebra

kG with a ’twisted’ k-bilinear multiplication by defining

x ¨ y “ αpx, yqxy.

As a result, the basis G of kG is no longer closed under multiplication. One important

note is that this new multiplication isn’t necessarily associative. We first give a criteria for

associativity.

Theorem 1.1. α : G ˆ G Ñ kˆ defines an associative twisted multiplication on kG if and

only if

αpxy, zqαpx, yq “ αpx, yzqαpy, zq

for all x, y, z P G.

Proof. Following from definitions and k-bilinearity of multiplication, we have:

px ¨ yq ¨ z “ αpx, yqpxyq ¨ z “ αpxy, zqαpx, yqxyz

On the other hand, we have:

x ¨ py ¨ zq “ αpy, zqx ¨ pyzq “ αpx, yzqαpy, zqxyz.

These are equal if and only if:

αpxy, zqαpx, yq “ αpx, yzqαpy, zq
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We next introduce 1- and 2-cocycles, which should hint at constructions of more general

homology groups. These are introduced with a bit more generality than is necessary for

strictly twisted group algebras, but will make stating specific theorems pertaining to twists

more concise.

Definition 1.2. Let G be a group, and let Z be an abelian group, written multiplicatively.

Let G act on Z from the left, written xα, where x P G and a P Z.

• A 1-cocycle of G with coefficients in Z is a map γ : G Ñ Z satisfying γpxyq “

γpxqpxγpyqq for all x, y P G. Denote by Z1pG;Zq the set of all 1-cocycles of G with

coefficients in Z.

• A 2-cocycle of G with coefficients in Z is a map α : G ˆ G Ñ Z satisfying the

2-cocycle identity,

αpxy, zqαpx, yq “ αpx, yzqpxαpy, zqq

for all x, y, z P G. We denote by Z2pG;Zq the set of all 2-cocycles of G with coefficients

in Z.

Note that if G acts trivially on Z, then the 2-cocycle identity is exactly the identity satisfied

by α in 1.1. One may check that Z1 and Z2 are indeed abelian groups given by pointwise

multiplication.

Proposition 1.3. Let G and Z be as in 1.2. Let γ P Z1pG;Zq and α P Z2pG;Zq. We have

γp1q “ 1 and for any x P G we have αp1, xq “ αp1, 1q and αpx, 1q “ xαp1, 1q.

Proof. This follows immediately from the 1- and 2-cocycle properties.

We now return to the specific example, where Z “ kˆ.

Definition 1.4. Let G be a group and α P Z2pG; kˆq with kˆ acting trivially on G. The

twisted group algebra of G by α is the k-algebra, denote kαG, which is equal to kG as a k-

module, endowed with the unique k-bilinear product kGˆkGÑ kG given by x¨y “ αpx, yqxy

for all x, y P G.

Here, x ¨ y denotes multiplication on kαG, whereas xy denotes the product of x and y in G.

Note that in kαG, there is a unit element, but it need not be the unit element 1 of G, as

1 ¨ x “ αp1, xqx. In fact, αp1, xq is independent of x.

Proposition 1.5. Let G be a group. Consider kˆ with the trivial action of G, and let

α P Z2pG; kˆq. Let x P G.

(i) αp1, xq “ αp1, 1q “ αpx, 1q.

(ii) αpx, x´1q “ αpx´1, xq.
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(iii) The unit element of kαG is αp1, 1q´11G.

(iv) The multiplicative inverse of x in kαG is αp1, 1q´1αpx, x´1q´1x´1.

Proof. Statement (i) follows immediately from 1.3. Statement (ii) follows from the 2-cocycle

identity, with choices of x, x´1, x we have:

αp1, xqαpx, x´1q “ αpx, 1qαpx´1, xq.

Applying (i) proves (ii). Statements (iii) and (iv) are straightforward verifications, applying

multiplication in kαG and statement (i).

Proposition 1.6. Let G be a group and α, β P Z2pG; kˆq. There is a k-algebra isomorphism

kαG – kβG mapping x P G to γpxqx for some scalar γpxq P kˆ if and only if

αpx, yq “ βpx, yqγpxqγpyqγpxyq´1

for all x, y P G.

Proof. Let x, y P G. Write x ¨ y for the product of x and y in kαG and x ˚ y for the

product of x and y in kβG. Let φ be the isomorphism described - we wish to verify that

φpx ¨ yq “ φpxq ˚ φpyq for all x, y P G. On one side, we have:

φpx ¨ yq “ φpαpx, yqxyq “ αpx, yqγpxyqxy.

On the other side, we have:

φpxq ˚ φpyq “ γpxqγpyqx ˚ y “ γpxqγpyqβpx, yqxy.

These terms coincide if and only if αpx, yq “ βpx, yqγpxqγpyqγpxyq´1, as desired.

It turns out that 1.6 can be restated in the language of (co)homology. We again return to

the more general case, this time to introduce 1- and 2-coboundaries, which form a subgroup

of the sets of 1- and 2-cocycles. This will enable us to define the corresponding cohomology

groups. Bear in mind the case where Z “ kˆ with trivial action for the next part.

Definition 1.7. Let G and Z be as previously stated.

• Denote by B1pG;Zq the set of maps γ : G Ñ Z for which there exists an element

z P Z for which γpxq “ pxzqz´1 for all x P G. The elements of B1pG;Zq are called

1-coboundaries of G with coefficients in Z. One may show B1pG;Zq Ĳ Z1pG;Zq.

Define H1pG;Zq :“ Z1pG;Zq{B1pG;Zq, the first cohomology group of G with

coefficients in Z; the elements in H1pG;Zq are the first cohomology classes of G

with coefficients in Z.
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• Denote by B2pG;Zq the set of maps α : G ˆ G Ñ Z for which there exists a map

γ : G Ñ Z such that αpx, yq “ γpxqpxγpyqqγpxyq´1 for all x, y P G. The elements

of B2pG;Zq are called 2-coboundaries of G with coefficients in Z. One may

show B2pG;Zq Ĳ Z2pG;Zq. Define H2pG;Zq :“ Z2pG;Zq{B2pG;Zq, the second

cohomology group of G with coefficients in Z; the elements in H1pG;Zq are the

second cohomology classes of G with coefficients in Z.

We now can restate 1.6 as follows: “There is a k-algebra isomorphism kαG – kβG mapping

x P G to γpxqx for some scalar γpxq P kˆ if and only if α and β belong to the same coho-

mology class of G (with coefficients in kˆ.)”

We’ll perform some basic calculations in the twisted algebra case (where Z “ kˆ).

Example 1.8. • If G acts trivially on Z, then it is clear that B1pG;Zq is trivial. Addi-

tionally, Z1pG;Zq is given by all maps satisfying γpxyq “ γpxqγpyq, or in other words,

all group homomorphisms G Ñ Z. Thus, H1pG;Zq “ HompG,Zq. When Z “ kˆ,

H1pG; kˆq “ HompG, kˆq is a finite group of order dividing |G|. Moreover, if k has

characteristic p, and P is a finite p-group, H1pG; kˆq is trivial, as kˆ has only one

element with order a power of p, 1.

• 1.6 implies that if α represents the trivial class in H2pG; kˆq, there is a k-algebra

isomorphism kG – kαG sending x Ñ γpxqx, and this homomorphism is unique up to

a group homomorphism GÑ kˆ. Hence, all such isomorphisms are parameterized by

H1pG;Zq “ HompG, kˆq.

Proposition 1.9. Let G be a finite group and α P Z2pG; kˆq. The class of α is trivial if

and only if kαG has a module that is isomorphic to k as a k-module.

Proof. First, if rαs “ 1, then kαG – kG, and the trivial kG-module is isomorphic to k as

a k-module. Now, suppose kαG has a module isomorphic to k, call it M . The structural

homomorphism of M is the k-algebra homomorphism kαGÑ EndkpMq given by x ÞÑ pm ÞÑ

xmq. However, since M is isomorphic to k as a k-module, EndkpMq – k as k-algebras.

(The previous lines came from Robert, he may be able to expand on this) Thus, we have an

algebra homomorphism ϕ : kαGÑ k. We therefore have that:

αpx, yqϕpxyq “ ϕpx ¨ yq “ ϕpxqϕpyq.

Hence αpx, yq “ ϕpxqϕpyqϕpxyq´1, and α is a 2-coboundary.

We may note that H ipG;Zq for i “ 1, 2 define covariant functors H ipG;´q : Ab Ñ Ab and

contravariant functors H ip´;Zq : Grp Ñ Ab. These functors send γ : Z Ñ Z 1 to the map

γ˚ : H ipG;Zq Ñ H ipG;Z 1q defined by post-composition, and send ϕ : G Ñ G1 to the map

ϕ˚ : H ipG1;Zq Ñ H i ˚ pG;Zq defined by pre-composition. In particular, if H is a subgroup

of G, then the inclusion of H into G induces restriction maps resGH : H ipG;Zq Ñ H ipH;Zq.
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Proposition 1.10. Let G be a finite group.

(i) Let Z be a multiplicatively written abelian group on which G acts. Then every element

in H ipG;Zq for i “ 1, 2 has finite order dividing |G|. If Z is finite, then H ipG;Zq divides

both |G| and |Z|. In particular, if gcdp|G|, |Z|q “ 1, H ipG;Zq is trivial.

(ii) Let k be an algebraically closed field and consider kˆ with the trivial action of G. Let

Z be the group of |G|-th roots of unity in kˆ. The inclusion ι : Z Ñ kˆ induces a

surjective group homomorphism ι˚ : H2pG;Zq Ñ H2pG; kˆq. In particular, H2pG; kˆq

is finite.

(iii) Suppose that k is a perfect field of characteristic p. Let P be a finite p-group. Then

H2pP ; kˆq is trivial.

Proof. (i) Let γ P Z1pG;Zq and x, y P G. We have γpxyq “ γpxqpxγpyqq. Fix x and take

the product over all y P G yields:

ź

yPG

γpxyq “
ź

yPG

γpyq “ γpxq|G|
ź

yPG

xγpyq.

Hence, γpxq|G| “
ś

yPG γpyqp
xpγpyq´1qq, implying γ|G| is a 1-coboundary and thus every

element in H1pG;Zq has finite order dividing |G|. If Z is finite, then so is the set of

maps from G to Z, so H1pG;Zq is finite. Viewing Z as a Z-module, one may see that

|Z| annihilates H1pG;Zq (as it annihilates Z), thus every element in H1pG;Zq has

order dividing |Z| as well.

Now let α P Z2pG;Zq, and for x P G, set µpxq “
ś

yPG αpx, yq. Let x, y, z P G and

consider the 2-cocycle identity,

αpx, yzqpxαpy, zqq “ αpxy, zqαpx, yq.

Taking the product over all z yields:

µpxqpxµpyqq “ µpxyqαpx, yq|G|.

This implies that α|G| P B2pG;Zq, so α P H2pG;Zq must have order dividing |G|.

Similar arguments as before are used when Z is finite to show every element inH2pG;Zq

has order dividing |Z|.

(ii) Now let Z be the group of |G|-th roots of unity in kˆ, and let G act trivially on

algebraically closed k. Let α P Z2pG; kˆq and µ as in (i). We wish to find a β

in the same cocycle class as α which has values entirely in Z. Since k is alge-

braically closed, for all x P G, there is νpxq P kˆ for which νpxq|G| “ µpxq. Define

βpx, yq “ αpx, yqνpxq´1νpyq´1νpxyq - then β and α belong to the same 2-cocycle class,
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and βpx, yq|G| “ αpx, yq|G|µpxq´1µpyq´1µpxyq. However, recall that we have the iden-

tity:

µpxqpxµpyqq “ µpxyqαpx, yq|G|.

Hence βpx, yq|G| “ 1. Therefore βpx, yq takes values in Z for all x, y P G.

(iii) With notation as before, if k has characteristic p, then Z is trivial, and if k is perfect,

then every element is a pth power. In particular, for any value µpxq P kˆ, there exists

an element νpxq P kˆ satisfying νpxq|P | “ µpxq. Thus the 2-cocycle β as defined before

is in the same cocycle class as 1.

Proposition 1.11. Let G be a finite cyclic group and k algebraically closed. Consider kˆ

with the trivial action of G. Then H2pG; kˆq is trivial.

Proof. Let G “ xxy, n “ |G|, and α P Z2pG; kˆq. Denote by x̂ the image of x in the twisted

group algebra kαG. Since xn “ 1, x̂n “ µ1 for some µ P kˆ. Since k is algebraically closed,

there exists ν P kˆ for which νn “ µαp1, 1q. Define x̃ “ ν´1x̂. Then, we may compute

x̃n “ ν´nx̂n “ µ´1αp1, 1q´1µ1 “ αp1, 1q´11.

From 1.5, this is the unit element of kαG. Therefore, the map sending powers of x to the

corresponding powers of x̃ induces an algebra isomorphism kG – kαG, and thus by 1.6, α

represents the trivial class.

We finish by noting there is a more structural interpretation of H2pG;Zq (those who are in

Marty’s reading will recall this!), in terms of invariants of ZG-modules. We defineH ipG;Zq “

ExtnZGpZ, Zq, where Z is viewed as a ZG-module with the prescribed action of G on Z. (The

definition of Ext may take a bit too long to define here, but it involves projective resolutions

of Z by ZG-modules.)

2 Group Extensions & Group Cohomology

We now shift gears to now review the parameterization of group extensions in terms of second

cohomology groups.

Definition 2.1. Consider the short exact sequence,

1 ÝÝÝÑ Z
ι

ÝÝÝÝÑ Ĝ
π

ÝÝÝÝÑ G ÝÝÝÑ 1

with Z abelian, that is, ι is injective, π is surjective, and kerpπq “ impιq. We say Ĝ is an

extension of G by Z. If ιpZq is contained in ZpĜq, then such an extension is called a

central extension of G by Z.
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In general, an extension of G by an abelian group Z induces an action of G on Z as follows

(identifying Z with its image ιpZq Ă Ĝ): if x P G and a P Z, define xa “ x̂ax̂´1, where

x̂ P Ĝ is any inverse image of x via π. From exactness, any two different inverse images of

x in Ĝ differ by an element in Z, and since Z is abelian, this definition does not depend on

the choice of x̂. Thus, the action is well-defined. The action is trivial precisely when Ĝ is a

central extension of G by Z.

Remark 2.2. Any extension of G by Z as above defines an element α P Z2pG;Zq in the

following way. For any x P G, choose x̂ P Ĝ such that πpx̂q “ x. Then, for any x, y P G, we

have that πpxxyq “ xy “ πpx̂ŷq. Therefore, xxy and x̂ŷ differ by a unique element in Z (more

precisely, in ιpZq). Therefore, we may define αpx, yq (with some abuse of notation) to be the

unique element of Z satisfying:

x̂ŷ “ αpx, yqxxy.

By performing the same computation as we did in 1.1, we show that associativity of group

multiplication in Ĝ is equivalent to the 2-cocycle identity of α, and thus conclude α P

Z2pG;Zq.

Caution! As currently written, the 2-cocycle α depends on the choice of elements x̂ P π´1pxq,

but soon, we will show that the class of α in H2pG;Zq is independent of this choice.

Proposition 2.3. The 2-cocycle α represents the trivial class in H2pG;Zq if and only if the

above central extension is split.

Proof. First, suppose the central extension is split, so there exists a section σ : GÑ Ĝ such

that π ˝ σ “ idG. Then, choosing x̂ “ σpxq for all x P G defines the constant 2-cocycle 1.

Now, suppose for some choice of elements x̂, α P B2pG;Zq, that is, there exists a map

µ : G Ñ Z such that αpx, yq “ µpxqpxµpyqqµpxyq´1 for all x, y P G. Define σpxq “ µpxq´1x̂.

It is clear that π ˝ σ “ idG, as µpxq P impιq “ kerpπq. We show that σ is a homomorphism:

σpxyq “ µpxyq´1xxy “ µpxq´1pxµpyqq´1x̂ŷ “ µpxq´1µpyq´1x̂ŷ “ σpxqσpyq.

This σ is a section of π, hence the central extension is split.

Remark 2.4. Conversely to 2.2, any α P Z2pG;Zq occurs as a 2-cocycle of an extension of

G in Z. As a set, we take Ĝ “ Z ˆG. We endow Ĝ with the product defined by

pλ, xqpµ, yq “ pαpx, yqλµ, xyq,

where x, y P G and λ, µ P Z. We perform the same computations as in 1.5 to show that Ĝ

is a group with unit element pαp1, 1q´1, 1q. Define π : Ĝ Ñ G as the projection πpλ, xq “ x

for pλ, xq P Ĝ. This is a surjective group homomorphism with kernel tpλ, 1q | λ P Zu – Z,

hence we have a short exact sequence. Finally by setting x̂ “ p1, xq for all x P G, we obtain

x̂ŷ “ pαpx, yq, xyq “ αpx, yqxxy, and thus, α is determined by this extension.
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Sam Side Remark: In A Gentle Course in Local Class Field Theory, by Pierre Guillot, a

slightly different construction of Ĝ is used: here, they endow the group multiplication with

a twist:

pλ, xqpµ, yq “ pαpx, yqλpxµq, xyq.

Multiple group extensions may correspond to the same 2-coboundaries!

Theorem 2.5. Let G be a group and Z a multiplicatively written abelian group. Let

1 ÝÝÝÑ Z ÝÝÝÑ Ĝ
π

ÝÝÝÝÑ G ÝÝÝÑ 1

1 ÝÝÝÑ Z ÝÝÝÑ Ǧ
τ

ÝÝÝÝÑ G ÝÝÝÑ 1

be two extensions of G by Z. Suppose that the two extensions induce the same action of

G on Z. For any x P G choose x̂ P Ĝ such that πpx̂q “ x and x̌ P Ǧ such that τpx̌q “ x.

Denote by α, β the 2-cocycles in Z2pG;Zq satisfying x̂ŷ “ αpx, yqxxy and x̌y̌ “ βpx, yq|xy for

all x, y P G. The classes of α and β in H2pG;Zq are equal if and only if there exists a group

isomorphism ϕ : Ĝ – Ǧ for which the following diagram commutes:

1 Z Ĝ G 1

1 Z Ǧ G 1

“

π

ϕ “

τ

Proof. Suppose that ϕ exists which makes the above diagram commute. Then for any

x P G, we have τpϕpx̂qq “ πpx̂q “ x “ τpx̌q. Thus by exactness there is γpxq P Z such that

ϕpx̂q “ ϕpxqx̌. It follows that:

ϕpx̂ŷq “ ϕpαpx, yqxxyq “ αpx, yqϕpxxyq “ αpx, yqγpxyq|xy

ϕpx̂qϕpŷq “ γpxqx̌γpyqy̌ “ γpxqx̌γpyqx̌´1x̌y̌ “ γpxqpxγpyqqβpx, yq|xy

These two expressions coincide if and only if αpx, yq “ βpx, yqγpxqpxγpyqqγpxyq´1, in other

words, precisely when α and β differ by a coboundary. Conversely, if α and β differ by a

coboundary given by γ, we may define ϕ by the formula ϕpzx̂q “ γpxqzx̌ for any x P G,

z P Z, and verify that it satisfies all the desired properties.

Before, we noted that the image of 1 P G in kαG may not be the unit element of the algebra.

However, we will now see that one can always achieve this by making a suitable choice for

the 2-cocycle α.

Definition 2.6. Let G be a group and Z a multiplicatively written abelian group on which

G acts. A 2-cocycle α P Z2pG;Zq is called normalized if αp1, xq “ 1 for all x P G.

One may note that in the language used in 2.5, α is normalized if and only if 1̂G “ 1Ĝ, that

is, the identity of Ĝ is chosen as the inverse image of the identity of G.
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Proposition 2.7. Let G and Z be as in . Any class in H2pG;Zq can be represented by a

normalized 2-cocycle.

Proof. Let α P Z2pG;Zq. By 1.3, αp1, 1q “ αp1, xq for all x P G. Set µpxq “ αp1, 1q, then

define

βpx, yq “ αpx, yqµpxq´1pxµpyqq´1µpxyq “ αpx, yqpxαp1, 1q´1q.

β P Z2pG;Zq represents the same class as α by definition and βp1, xq “ βp1, 1q “ 1 by

construction.

We now return our focus to twisted group algebras. Let α P H2pG; kˆq and let H ď G.

Suppose that resGHpαq “ 1 P H2pH; kˆq, then by 1.6, the inclusion ι : H Ñ G and some

map γ : H Ñ kˆ yield an injective algebra homomorphism kH Ñ kαG sending y P H to

γpyqy P kαG. In this way, kαG becomes a kH´kH-bimodule, with kH as a direct summand

in its decomposition. The next proposition concerns this scenario.

Proposition 2.8. Let G be a group, H a subgroup of finite index in G, and Z an abelian

group, written multiplicatively, on which G acts. Let α P H2pG;Zq. If resGHpαq is the trivial

class in H2pH;Zq, then αrG:Hs is the trivial class in H2pG;Zq.

Proof. Consider a group extension

1 ÝÝÝÑ Z
ι

ÝÝÝÝÑ Ĝ
π

ÝÝÝÝÑ G ÝÝÝÑ 1

and choose elements x̂ P Ĝ such that πpx̂q “ x for x P G and such that x̂ŷ “ αpx, yqxxy, where

the book again abusively denotes by α a 2-cocycle representing the class α. By assumption,

α restricts to an element in B2pH;Zq, so we may assume that α is constantly 1 on H ˆH.

Therefore, given y, z P H, ŷẑ “ xyz.

Denote by R a set of coset representatives of G{H in G. Then, ever element in G can be

written uniquely as xh for some x P R and h P H. We now modify our choice of x̂: if x P R
and h P H, we keep our previous choices of x̂ and ĥ and set xxh :“ x̂ĥ for all other elements

of G. (Recall we may do this via 2.5, as we are working within a cocycle class.) From this

choice, we may verify that x̂ĥ “ xxh for any x P G, h P H. Thus αpx, hq “ 1 when h P H.

The 2-cocycle identity

αpx, yhqpxαpy, hqq “ αpxy, hqαpx, yq

implies that αpx, yhq “ αpx, yq for any x, y P G and h P H. In other words αpx, yq depends

only on the H-coset of y for the 2nd variable. Thus, the expression

µpxq “
ź

yPR
αpx, yq

does not depend on the choice of R. Now, for x, y, z P G consider the 2-cocycle identity:
ź

zPR
αpx, yzqpxαpy, zqq “ αpxy, zqαpx, yq.
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This gives:

µpxqpxµpyqq “ µpxyqαpx, yqrG:Hs,

and hence αrG:Hs P B2pG;Zq, as desired.

Corollary 2.9. Let G be a finite group, p prime, P a Sylow p-subgroup of G, and Z an

abelian p-group on which G acts. The restriction map resGP : H2pG;Zq Ñ H2pP ;Zq is

injective.

Proof. Let m “ rG : P s, a positive integer which p does not divide. If α P H2pG;Zq

satisfies resGP pαq “ 0, then αm “ 0 by 2.8, and thus α “ 0 since taking mth powers is an

automorphism of Z, since Z is an abelian p-group.

Note that a twisted group algebra kαG does not in general have a basis which is closed under

multiplication, but the next proposition shows that it is a quotient of the group algebra kĜ

of the central extension Ĝ of G determined by α.

Proposition 2.10. Let Z be an abelian group, written multiplicatively, and let

1 ÝÝÝÑ Z
ι

ÝÝÝÝÑ Ĝ
π

ÝÝÝÝÑ G ÝÝÝÑ 1

be a central extension of a group G by Z. For any x P G, choose x̂ P Ĝ such that πpx̂q “ x

and denote by β the 2-cocyle in Z2pG;Zq determined by x̂ŷ “ βpx, yqxxy for x, y P G. Let

µ : Z Ñ kˆ be a group homomorphism. Then α “ µ ˝ β is a 2-cocycle in Z2pG; kˆq and the

map sending zx̂ to µpzqx for any x P G and z P Z induces a surjective algebra homomorphism

kĜÑ kαG

Proof. Since µ is a group homomorphism, applying µ to the 2-cocycle identity for β shows

that α satisfies the 2-cocycle identity (or use functoriality). For the last statement, call the

map ϕ. Using centrality, we see:

ϕpz1x̂1q ¨ ϕpz2x̂2q “ µpz1qµpz2qx1 ¨ x2

“ µpz1z2qαpx, yqx1x2

“ µpz1z2βpx1, x2qqx1x2

“ ϕpz1z2βpx1, x2qzx1x2q

“ ϕpz1x̂1z2x̂2q

The book now admits to the confusion of multiplying elements in G and Z together in Ĝ, as

for example, elements of kˆ could either be group elements of Ĝ or scalars of kĜ. The book

decides to give a name to the inclusion ι : kˆ Ñ Ĝ for expressing elements of kˆ as elements

of group extensions. (Are there more things to note here?)
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Proposition 2.11. Suppose that k is an algebraically closed field. Let G be a finite group

which acts trivially on kˆ, let α P H2pG; kˆq, and let

1 ÝÝÝÑ kˆ
ι

ÝÝÝÝÑ Ĝ
π

ÝÝÝÝÑ G ÝÝÝÑ 1

be a central extension of G by kˆ representing α. There is a finite subgroup G1 of Ĝ with

the following properties:

(i) We have Ĝ “ ιpkˆq ¨G1 and Z “ ιpkˆq XG1 is equal to the subgroup of |G|th roots of

unity in kˆ. In particular, |G1| “ |Z| ¨ |G| and the exponent of G1 divides |G|2.

(ii) The inclusion G1 Ñ Ĝ induces an isomorphism of k-algebras kG1 ¨ eZ – kαG, where eZ
is the idempotent in ZpkG1q defined by

eZ “
1

|Z|

ÿ

zPZ

z

Proof. As usual, denote by x̂ an inverse image of x in Ĝ. Then α is represented by the

2-cocycle, abusively (still) denoted α satisfying x̂ ¨ ŷ “ αpx, yqxxy for all x, y P G. By 1.10(ii),

there exists some map µ : G Ñ kˆ for which βpx, yq “ αpx, yqµpxqµpyqµpxyq´1 has values

in the subgroup Z of all |G|-th roots of unity of kˆ. Moreover, we may choose β to be

normalized by 2.7.

Now, set x̃ “ µpxqx̂. Then, for x, y P G, we have

x̃ ¨ ỹ “ µpxqx̂ ¨ µpyqŷ “ µpxqµpyqαpx, yqxxy “ βpx, yqµpxyqxxy “ βpx, yqĂxy.

Since β is normalized we have 1̃G “ 1G̃, thus:

G1 “ tζx̃ | ζ P Z, x P Gu ď Ĝ

satisfies both Ĝ “ kˆ ¨G1 and Z “ kˆ XG1, as desired for (i).

Now, note that |Z| is necessarily invertible in kˆ, therefore the element eZ as defined above

is an idempotent in ZpkG1q (recalling from the previous chapter). The inclusion from G1 to

Ĝ induces an algebra homomorphism kG1 Ñ kĜ. In addition, 2.10 gives us a map sending

x̃ “ µpxqx̂ to x P G, viewed as an element in kαG (here, I believe the homomorphism in

question for using 2.10 is the trivial one on kˆ). Composing these maps yields an algebra

homomorphism kG1 Ñ kαG. Since the canonical map ĜÑ G sendsG1 ontoG (one may check

this from the definition of G1), this algebra homomorphism is surjective, and by construction

of G1, this homomorphism sends every element z P Z as viewed as an element of G1 to 1.

Therefore, it sends eZ to 1, and thus induces a surjective algebra homomorphism kG1 ¨ eZ Ñ

kαG. However, |G1|{|Z| “ |G|, thus both algebras have the same dimension, and hence are

isomorphic.
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