1.2: Twisted Group Algebras and Group Cohomology ### Sam Miller ## 1 Twisted Group Algebras & Group Cohomology Further in this chapter, we will look at group extensions of a group G by an abelian group Z, which is endowed with a G-action. The parametrisation of these group extensions is given by the second cohomology group $H^2(G; Z)$ - we will define the cohomology groups $H^1(G; Z)$ and $H^2(G; Z)$ in a different light, then show canonical equivalence of these definitions. Given a group G, field k, and some map $\alpha: G \times G \to k^{\times}$, we can define the group algebra kG with a 'twisted' k-bilinear multiplication by defining $$x \cdot y = \alpha(x, y)xy.$$ As a result, the basis G of kG is no longer closed under multiplication. One important note is that this new multiplication isn't necessarily associative. We first give a criteria for associativity. **Theorem 1.1.** $\alpha: G \times G \to k^{\times}$ defines an associative twisted multiplication on kG if and only if $$\alpha(xy, z)\alpha(x, y) = \alpha(x, yz)\alpha(y, z)$$ for all $x, y, z \in G$. *Proof.* Following from definitions and k-bilinearity of multiplication, we have: $$(x \cdot y) \cdot z = \alpha(x, y)(xy) \cdot z = \alpha(xy, z)\alpha(x, y)xyz$$ On the other hand, we have: $$x \cdot (y \cdot z) = \alpha(y, z)x \cdot (yz) = \alpha(x, yz)\alpha(y, z)xyz.$$ These are equal if and only if: $$\alpha(xy, z)\alpha(x, y) = \alpha(x, yz)\alpha(y, z)$$ We next introduce 1- and 2-cocycles, which should hint at constructions of more general homology groups. These are introduced with a bit more generality than is necessary for strictly twisted group algebras, but will make stating specific theorems pertaining to twists more concise. **Definition 1.2.** Let G be a group, and let Z be an abelian group, written multiplicatively. Let G act on Z from the left, written ${}^x\alpha$, where $x \in G$ and $a \in Z$. - A 1-cocycle of G with coefficients in Z is a map $\gamma: G \to Z$ satisfying $\gamma(xy) = \gamma(x)(^x\gamma(y))$ for all $x, y \in G$. Denote by $Z^1(G; Z)$ the set of all 1-cocycles of G with coefficients in Z. - A 2-cocycle of G with coefficients in Z is a map $\alpha: G \times G \to Z$ satisfying the 2-cocycle identity, $$\alpha(xy, z)\alpha(x, y) = \alpha(x, yz)(^{x}\alpha(y, z))$$ for all $x, y, z \in G$. We denote by $Z^2(G; Z)$ the set of all 2-cocycles of G with coefficients in Z. Note that if G acts trivially on Z, then the 2-cocycle identity is exactly the identity satisfied by α in 1.1. One may check that Z^1 and Z^2 are indeed abelian groups given by pointwise multiplication. **Proposition 1.3.** Let G and Z be as in 1.2. Let $\gamma \in Z^1(G; Z)$ and $\alpha \in Z^2(G; Z)$. We have $\gamma(1) = 1$ and for any $x \in G$ we have $\alpha(1, x) = \alpha(1, 1)$ and $\alpha(x, 1) = {}^x\alpha(1, 1)$. *Proof.* This follows immediately from the 1- and 2-cocycle properties. \Box We now return to the specific example, where $Z = k^{\times}$. **Definition 1.4.** Let G be a group and $\alpha \in Z^2(G; k^{\times})$ with k^{\times} acting trivially on G. The **twisted group algebra of** G by α is the k-algebra, denote $k_{\alpha}G$, which is equal to kG as a k-module, endowed with the unique k-bilinear product $kG \times kG \to kG$ given by $x \cdot y = \alpha(x, y)xy$ for all $x, y \in G$. Here, $x \cdot y$ denotes multiplication on $k_{\alpha}G$, whereas xy denotes the product of x and y in G. Note that in $k_{\alpha}G$, there is a unit element, but it need not be the unit element 1 of G, as $1 \cdot x = \alpha(1, x)x$. In fact, $\alpha(1, x)$ is independent of x. **Proposition 1.5.** Let G be a group. Consider k^{\times} with the trivial action of G, and let $\alpha \in Z^2(G; k^{\times})$. Let $x \in G$. (i) $$\alpha(1, x) = \alpha(1, 1) = \alpha(x, 1)$$. (ii) $$\alpha(x, x^{-1}) = \alpha(x^{-1}, x)$$. - (iii) The unit element of $k_{\alpha}G$ is $\alpha(1,1)^{-1}1_{G}$. - (iv) The multiplicative inverse of x in $k_{\alpha}G$ is $\alpha(1,1)^{-1}\alpha(x,x^{-1})^{-1}x^{-1}$. *Proof.* Statement (i) follows immediately from 1.3. Statement (ii) follows from the 2-cocycle identity, with choices of x, x^{-1}, x we have: $$\alpha(1, x)\alpha(x, x^{-1}) = \alpha(x, 1)\alpha(x^{-1}, x).$$ Applying (i) proves (ii). Statements (iii) and (iv) are straightforward verifications, applying multiplication in $k_{\alpha}G$ and statement (i). **Proposition 1.6.** Let G be a group and $\alpha, \beta \in Z^2(G; k^{\times})$. There is a k-algebra isomorphism $k_{\alpha}G \cong k_{\beta}G$ mapping $x \in G$ to $\gamma(x)x$ for some scalar $\gamma(x) \in k^{\times}$ if and only if $$\alpha(x,y) = \beta(x,y)\gamma(x)\gamma(y)\gamma(xy)^{-1}$$ for all $x, y \in G$. *Proof.* Let $x, y \in G$. Write $x \cdot y$ for the product of x and y in $k_{\alpha}G$ and x * y for the product of x and y in $k_{\beta}G$. Let ϕ be the isomorphism described - we wish to verify that $\phi(x \cdot y) = \phi(x) * \phi(y)$ for all $x, y \in G$. On one side, we have: $$\phi(x \cdot y) = \phi(\alpha(x, y)xy) = \alpha(x, y)\gamma(xy)xy.$$ On the other side, we have: $$\phi(x) * \phi(y) = \gamma(x)\gamma(y)x * y = \gamma(x)\gamma(y)\beta(x,y)xy.$$ These terms coincide if and only if $\alpha(x,y) = \beta(x,y)\gamma(x)\gamma(y)\gamma(xy)^{-1}$, as desired. It turns out that 1.6 can be restated in the language of (co)homology. We again return to the more general case, this time to introduce 1- and 2-coboundaries, which form a subgroup of the sets of 1- and 2-cocycles. This will enable us to define the corresponding cohomology groups. Bear in mind the case where $Z = k^{\times}$ with trivial action for the next part. **Definition 1.7.** Let G and Z be as previously stated. • Denote by $B^1(G; Z)$ the set of maps $\gamma: G \to Z$ for which there exists an element $z \in Z$ for which $\gamma(x) = ({}^xz)z^{-1}$ for all $x \in G$. The elements of $B^1(G; Z)$ are called **1-coboundaries of** G with coefficients in Z. One may show $B^1(G; Z) \leq Z^1(G; Z)$. Define $H^1(G; Z) := Z^1(G; Z)/B^1(G; Z)$, the first cohomology group of G with coefficients in Z; the elements in $H^1(G; Z)$ are the first cohomology classes of G with coefficients in Z. • Denote by $B^2(G; Z)$ the set of maps $\alpha: G \times G \to Z$ for which there exists a map $\gamma: G \to Z$ such that $\alpha(x,y) = \gamma(x)({}^x\gamma(y))\gamma(xy)^{-1}$ for all $x,y \in G$. The elements of $B^2(G;Z)$ are called **2-coboundaries of** G with coefficients in G. One may show $B^2(G;Z) \leq Z^2(G;Z)$. Define $H^2(G;Z) := Z^2(G;Z)/B^2(G;Z)$, the second cohomology group of G with coefficients in G; the elements in G are the second cohomology classes of G with coefficients in G. We now can restate 1.6 as follows: "There is a k-algebra isomorphism $k_{\alpha}G \cong k_{\beta}G$ mapping $x \in G$ to $\gamma(x)x$ for some scalar $\gamma(x) \in k^{\times}$ if and only if α and β belong to the same cohomology class of G (with coefficients in k^{\times} .)" We'll perform some basic calculations in the twisted algebra case (where $Z = k^{\times}$). - **Example 1.8.** If G acts trivially on Z, then it is clear that $B^1(G; Z)$ is trivial. Additionally, $Z^1(G; Z)$ is given by all maps satisfying $\gamma(xy) = \gamma(x)\gamma(y)$, or in other words, all group homomorphisms $G \to Z$. Thus, $H^1(G; Z) = \text{Hom}(G, Z)$. When $Z = k^{\times}$, $H^1(G; k^{\times}) = \text{Hom}(G, k^{\times})$ is a finite group of order dividing |G|. Moreover, if k has characteristic p, and P is a finite p-group, $H^1(G; k^{\times})$ is trivial, as k^{\times} has only one element with order a power of p, 1. - 1.6 implies that if α represents the trivial class in $H^2(G; k^{\times})$, there is a k-algebra isomorphism $kG \cong k_{\alpha}G$ sending $x \to \gamma(x)x$, and this homomorphism is unique up to a group homomorphism $G \to k^{\times}$. Hence, all such isomorphisms are parameterized by $H^1(G; Z) = \text{Hom}(G, k^{\times})$. **Proposition 1.9.** Let G be a finite group and $\alpha \in Z^2(G; k^{\times})$. The class of α is trivial if and only if $k_{\alpha}G$ has a module that is isomorphic to k as a k-module. Proof. First, if $[\alpha] = 1$, then $k_{\alpha}G \cong kG$, and the trivial kG-module is isomorphic to k as a k-module. Now, suppose $k_{\alpha}G$ has a module isomorphic to k, call it M. The structural homomorphism of M is the k-algebra homomorphism $k_{\alpha}G \to \operatorname{End}_k(M)$ given by $x \mapsto (m \mapsto xm)$. However, since M is isomorphic to k as a k-module, $\operatorname{End}_k(M) \cong k$ as k-algebras. (The previous lines came from Robert, he may be able to expand on this) Thus, we have an algebra homomorphism $\varphi: k_{\alpha}G \to k$. We therefore have that: $$\alpha(x, y)\varphi(xy) = \varphi(x \cdot y) = \varphi(x)\varphi(y).$$ Hence $\alpha(x,y) = \varphi(x)\varphi(y)\varphi(xy)^{-1}$, and α is a 2-coboundary. We may note that $H^i(G; Z)$ for i = 1, 2 define covariant functors $H^i(G; -) : \mathbf{Ab} \to \mathbf{Ab}$ and contravariant functors $H^i(-; Z) : \mathbf{Grp} \to \mathbf{Ab}$. These functors send $\gamma : Z \to Z'$ to the map $\gamma_* : H^i(G; Z) \to H^i(G; Z')$ defined by post-composition, and send $\varphi : G \to G'$ to the map $\varphi^* : H^i(G'; Z) \to H^i * (G; Z)$ defined by pre-composition. In particular, if H is a subgroup of G, then the inclusion of H into G induces restriction maps $\operatorname{res}_H^G : H^i(G; Z) \to H^i(H; Z)$. #### **Proposition 1.10.** Let G be a finite group. - (i) Let Z be a multiplicatively written abelian group on which G acts. Then every element in $H^i(G; Z)$ for i = 1, 2 has finite order dividing |G|. If Z is finite, then $H^i(G; Z)$ divides both |G| and |Z|. In particular, if gcd(|G|, |Z|) = 1, $H^i(G; Z)$ is trivial. - (ii) Let k be an algebraically closed field and consider k^{\times} with the trivial action of G. Let Z be the group of |G|-th roots of unity in k^{\times} . The inclusion $\iota: Z \to k^{\times}$ induces a surjective group homomorphism $\iota_*: H^2(G; Z) \to H^2(G; k^{\times})$. In particular, $H^2(G; k^{\times})$ is finite. - (iii) Suppose that k is a perfect field of characteristic p. Let P be a finite p-group. Then $H^2(P; k^{\times})$ is trivial. - *Proof.* (i) Let $\gamma \in Z^1(G; Z)$ and $x, y \in G$. We have $\gamma(xy) = \gamma(x)(x^2\gamma(y))$. Fix x and take the product over all $y \in G$ yields: $$\prod_{y \in G} \gamma(xy) = \prod_{y \in G} \gamma(y) = \gamma(x)^{|G|} \prod_{y \in G} {}^{x}\gamma(y).$$ Hence, $\gamma(x)^{|G|} = \prod_{y \in G} \gamma(y)(^x(\gamma(y)^{-1}))$, implying $\gamma^{|G|}$ is a 1-coboundary and thus every element in $H^1(G; Z)$ has finite order dividing |G|. If Z is finite, then so is the set of maps from G to Z, so $H^1(G; Z)$ is finite. Viewing Z as a \mathbb{Z} -module, one may see that |Z| annihilates $H^1(G; Z)$ (as it annihilates Z), thus every element in $H^1(G; Z)$ has order dividing |Z| as well. Now let $\alpha \in Z^2(G; \mathbb{Z})$, and for $x \in G$, set $\mu(x) = \prod_{y \in G} \alpha(x, y)$. Let $x, y, z \in G$ and consider the 2-cocycle identity, $$\alpha(x, yz)(^x\alpha(y, z)) = \alpha(xy, z)\alpha(x, y).$$ Taking the product over all z yields: $$\mu(x)(^{x}\mu(y)) = \mu(xy)\alpha(x,y)^{|G|}.$$ This implies that $\alpha^{|G|} \in B^2(G; \mathbb{Z})$, so $\alpha \in H^2(G; \mathbb{Z})$ must have order dividing |G|. Similar arguments as before are used when \mathbb{Z} is finite to show every element in $H^2(G; \mathbb{Z})$ has order dividing $|\mathbb{Z}|$. (ii) Now let Z be the group of |G|-th roots of unity in k^{\times} , and let G act trivially on algebraically closed k. Let $\alpha \in Z^2(G; k^{\times})$ and μ as in (i). We wish to find a β in the same cocycle class as α which has values entirely in Z. Since k is algebraically closed, for all $x \in G$, there is $\nu(x) \in k^{\times}$ for which $\nu(x)^{|G|} = \mu(x)$. Define $\beta(x,y) = \alpha(x,y)\nu(x)^{-1}\nu(y)^{-1}\nu(xy)$ - then β and α belong to the same 2-cocycle class, and $\beta(x,y)^{|G|} = \alpha(x,y)^{|G|}\mu(x)^{-1}\mu(y)^{-1}\mu(xy)$. However, recall that we have the identity: $$\mu(x)(^{x}\mu(y)) = \mu(xy)\alpha(x,y)^{|G|}.$$ Hence $\beta(x,y)^{|G|} = 1$. Therefore $\beta(x,y)$ takes values in Z for all $x,y \in G$. (iii) With notation as before, if k has characteristic p, then Z is trivial, and if k is perfect, then every element is a pth power. In particular, for any value $\mu(x) \in k^{\times}$, there exists an element $\nu(x) \in k^{\times}$ satisfying $\nu(x)^{|P|} = \mu(x)$. Thus the 2-cocycle β as defined before is in the same cocycle class as 1. **Proposition 1.11.** Let G be a finite cyclic group and k algebraically closed. Consider k^{\times} with the trivial action of G. Then $H^2(G; k^{\times})$ is trivial. *Proof.* Let $G = \langle x \rangle$, n = |G|, and $\alpha \in Z^2(G; k^{\times})$. Denote by \hat{x} the image of x in the twisted group algebra $k_{\alpha}G$. Since $x^n = 1$, $\hat{x}^n = \mu 1$ for some $\mu \in k^{\times}$. Since k is algebraically closed, there exists $\nu \in k^{\times}$ for which $\nu^n = \mu \alpha(1, 1)$. Define $\tilde{x} = \nu^{-1}\hat{x}$. Then, we may compute $$\tilde{x}^n = \nu^{-n} \hat{x}^n = \mu^{-1} \alpha (1, 1)^{-1} \mu 1 = \alpha (1, 1)^{-1} 1.$$ From 1.5, this is the unit element of $k_{\alpha}G$. Therefore, the map sending powers of x to the corresponding powers of \tilde{x} induces an algebra isomorphism $kG \cong k_{\alpha}G$, and thus by 1.6, α represents the trivial class. We finish by noting there is a more structural interpretation of $H^2(G; \mathbb{Z})$ (those who are in Marty's reading will recall this!), in terms of invariants of $\mathbb{Z}G$ -modules. We define $H^i(G; \mathbb{Z}) = \operatorname{Ext}_{\mathbb{Z}G}^n(\mathbb{Z}, \mathbb{Z})$, where \mathbb{Z} is viewed as a $\mathbb{Z}G$ -module with the prescribed action of \mathbb{G} on \mathbb{Z} . (The definition of Ext may take a bit too long to define here, but it involves projective resolutions of \mathbb{Z} by $\mathbb{Z}G$ -modules.) ### 2 Group Extensions & Group Cohomology We now shift gears to now review the parameterization of group extensions in terms of second cohomology groups. **Definition 2.1.** Consider the short exact sequence, $$1 \longrightarrow Z \stackrel{\iota}{\longrightarrow} \hat{G} \stackrel{\pi}{\longrightarrow} G \longrightarrow 1$$ with Z abelian, that is, ι is injective, π is surjective, and $\ker(\pi) = \operatorname{im}(\iota)$. We say \hat{G} is an extension of G by Z. If $\iota(Z)$ is contained in $Z(\hat{G})$, then such an extension is called a central extension of G by Z. In general, an extension of G by an abelian group Z induces an action of G on Z as follows (identifying Z with its image $\iota(Z) \subset \hat{G}$): if $x \in G$ and $a \in Z$, define ${}^xa = \hat{x}a\hat{x}^{-1}$, where $\hat{x} \in \hat{G}$ is any inverse image of x via π . From exactness, any two different inverse images of x in \hat{G} differ by an element in Z, and since Z is abelian, this definition does not depend on the choice of \hat{x} . Thus, the action is well-defined. The action is trivial precisely when \hat{G} is a central extension of G by Z. **Remark 2.2.** Any extension of G by Z as above defines an element $\alpha \in Z^2(G; Z)$ in the following way. For any $x \in G$, choose $\hat{x} \in \hat{G}$ such that $\pi(\hat{x}) = x$. Then, for any $x, y \in G$, we have that $\pi(\widehat{xy}) = xy = \pi(\hat{x}\hat{y})$. Therefore, \widehat{xy} and $\widehat{x}\hat{y}$ differ by a unique element in Z (more precisely, in $\iota(Z)$). Therefore, we may define $\alpha(x,y)$ (with some abuse of notation) to be the unique element of Z satisfying: $$\hat{x}\hat{y} = \alpha(x, y)\widehat{xy}.$$ By performing the same computation as we did in 1.1, we show that associativity of group multiplication in \hat{G} is equivalent to the 2-cocycle identity of α , and thus conclude $\alpha \in Z^2(G; \mathbb{Z})$. Caution! As currently written, the 2-cocycle α depends on the choice of elements $\hat{x} \in \pi^{-1}(x)$, but soon, we will show that the class of α in $H^2(G; Z)$ is independent of this choice. **Proposition 2.3.** The 2-cocycle α represents the trivial class in $H^2(G; \mathbb{Z})$ if and only if the above *central* extension is split. Proof. First, suppose the central extension is split, so there exists a section $\sigma: G \to \hat{G}$ such that $\pi \circ \sigma = \mathrm{id}_G$. Then, choosing $\hat{x} = \sigma(x)$ for all $x \in G$ defines the constant 2-cocycle 1. Now, suppose for some choice of elements \hat{x} , $\alpha \in B^2(G; Z)$, that is, there exists a map $\mu: G \to Z$ such that $\alpha(x,y) = \mu(x)({}^x\mu(y))\mu(xy)^{-1}$ for all $x,y \in G$. Define $\sigma(x) = \mu(x)^{-1}\hat{x}$. It is clear that $\pi \circ \sigma = \mathrm{id}_G$, as $\mu(x) \in \mathrm{im}(\iota) = \ker(\pi)$. We show that σ is a homomorphism: $$\sigma(xy) = \mu(xy)^{-1} \widehat{xy} = \mu(x)^{-1} ({}^x\mu(y))^{-1} \hat{x}\hat{y} = \mu(x)^{-1} \mu(y)^{-1} \hat{x}\hat{y} = \sigma(x)\sigma(y).$$ This σ is a section of π , hence the central extension is split. **Remark 2.4.** Conversely to 2.2, any $\alpha \in Z^2(G; Z)$ occurs as a 2-cocycle of an extension of G in Z. As a set, we take $\hat{G} = Z \times G$. We endow \hat{G} with the product defined by $$(\lambda, x)(\mu, y) = (\alpha(x, y)\lambda\mu, xy),$$ where $x, y \in G$ and $\lambda, \mu \in Z$. We perform the same computations as in 1.5 to show that \hat{G} is a group with unit element $(\alpha(1,1)^{-1},1)$. Define $\pi:\hat{G}\to G$ as the projection $\pi(\lambda,x)=x$ for $(\lambda,x)\in\hat{G}$. This is a surjective group homomorphism with kernel $\{(\lambda,1)\mid \lambda\in Z\}\cong Z$, hence we have a short exact sequence. Finally by setting $\hat{x}=(1,x)$ for all $x\in G$, we obtain $\hat{x}\hat{y}=(\alpha(x,y),xy)=\alpha(x,y)\hat{xy}$, and thus, α is determined by this extension. **Sam Side Remark**: In A Gentle Course in Local Class Field Theory, by Pierre Guillot, a slightly different construction of \hat{G} is used: here, they endow the group multiplication with a twist: $$(\lambda, x)(\mu, y) = (\alpha(x, y)\lambda(^{x}\mu), xy).$$ Multiple group extensions may correspond to the same 2-coboundaries! **Theorem 2.5.** Let G be a group and Z a multiplicatively written abelian group. Let $$1 \longrightarrow Z \longrightarrow \hat{G} \stackrel{\pi}{\longrightarrow} G \longrightarrow 1$$ $$1 \longrightarrow Z \longrightarrow \check{G} \stackrel{\tau}{\longrightarrow} G \longrightarrow 1$$ be two extensions of G by Z. Suppose that the two extensions induce the same action of G on Z. For any $x \in G$ choose $\hat{x} \in \hat{G}$ such that $\pi(\hat{x}) = x$ and $\check{x} \in \check{G}$ such that $\tau(\check{x}) = x$. Denote by α, β the 2-cocycles in $Z^2(G; Z)$ satisfying $\hat{x}\hat{y} = \alpha(x, y)\widehat{xy}$ and $\check{x}\check{y} = \beta(x, y)\check{xy}$ for all $x, y \in G$. The classes of α and β in $H^2(G; Z)$ are equal if and only if there exists a group isomorphism $\varphi : \hat{G} \cong \check{G}$ for which the following diagram commutes: $$1 \longrightarrow Z \longrightarrow \hat{G} \xrightarrow{\pi} G \longrightarrow 1$$ $$\downarrow = \qquad \downarrow \varphi \qquad \downarrow =$$ $$1 \longrightarrow Z \longrightarrow \check{G} \xrightarrow{\tau} G \longrightarrow 1$$ *Proof.* Suppose that φ exists which makes the above diagram commute. Then for any $x \in G$, we have $\tau(\varphi(\hat{x})) = \pi(\hat{x}) = x = \tau(\check{x})$. Thus by exactness there is $\gamma(x) \in Z$ such that $\varphi(\hat{x}) = \varphi(x)\check{x}$. It follows that: $$\varphi(\hat{x}\hat{y}) = \varphi(\alpha(x,y)\widehat{xy}) = \alpha(x,y)\varphi(\widehat{xy}) = \alpha(x,y)\gamma(xy)\widecheck{xy}$$ $$\varphi(\hat{x})\varphi(\hat{y}) = \gamma(x)\widecheck{x}\gamma(y)\widecheck{y} = \gamma(x)\widecheck{x}\gamma(y)\widecheck{x}^{-1}\widecheck{x}\widecheck{y} = \gamma(x)(^{x}\gamma(y))\beta(x,y)\widecheck{xy}$$ These two expressions coincide if and only if $\alpha(x,y) = \beta(x,y)\gamma(x)(x^2\gamma(y))\gamma(xy)^{-1}$, in other words, precisely when α and β differ by a coboundary. Conversely, if α and β differ by a coboundary given by γ , we may define φ by the formula $\varphi(z\hat{x}) = \gamma(x)z\tilde{x}$ for any $x \in G$, $z \in Z$, and verify that it satisfies all the desired properties. Before, we noted that the image of $1 \in G$ in $k_{\alpha}G$ may not be the unit element of the algebra. However, we will now see that one can always achieve this by making a suitable choice for the 2-cocycle α . **Definition 2.6.** Let G be a group and Z a multiplicatively written abelian group on which G acts. A 2-cocycle $\alpha \in Z^2(G; Z)$ is called **normalized** if $\alpha(1, x) = 1$ for all $x \in G$. One may note that in the language used in 2.5, α is normalized if and only if $\hat{1}_G = 1_{\hat{G}}$, that is, the identity of \hat{G} is chosen as the inverse image of the identity of G. **Proposition 2.7.** Let G and Z be as in . Any class in $H^2(G; Z)$ can be represented by a normalized 2-cocycle. *Proof.* Let $\alpha \in Z^2(G; Z)$. By 1.3, $\alpha(1,1) = \alpha(1,x)$ for all $x \in G$. Set $\mu(x) = \alpha(1,1)$, then define $$\beta(x,y) = \alpha(x,y)\mu(x)^{-1}({}^{x}\mu(y))^{-1}\mu(xy) = \alpha(x,y)({}^{x}\alpha(1,1)^{-1}).$$ $\beta \in Z^2(G; Z)$ represents the same class as α by definition and $\beta(1, x) = \beta(1, 1) = 1$ by construction. We now return our focus to twisted group algebras. Let $\alpha \in H^2(G; k^{\times})$ and let $H \leq G$. Suppose that $res_H^G(\alpha) = 1 \in H^2(H; k^{\times})$, then by 1.6, the inclusion $\iota : H \to G$ and some map $\gamma : H \to k^{\times}$ yield an injective algebra homomorphism $kH \to k_{\alpha}G$ sending $y \in H$ to $\gamma(y)y \in k_{\alpha}G$. In this way, $k_{\alpha}G$ becomes a kH - kH-bimodule, with kH as a direct summand in its decomposition. The next proposition concerns this scenario. **Proposition 2.8.** Let G be a group, H a subgroup of finite index in G, and Z an abelian group, written multiplicatively, on which G acts. Let $\alpha \in H^2(G; Z)$. If $\operatorname{res}_H^G(\alpha)$ is the trivial class in $H^2(H; Z)$, then $\alpha^{[G:H]}$ is the trivial class in $H^2(G; Z)$. *Proof.* Consider a group extension $$1 \longrightarrow Z \xrightarrow{\iota} \hat{G} \xrightarrow{\pi} G \longrightarrow 1$$ and choose elements $\hat{x} \in \hat{G}$ such that $\pi(\hat{x}) = x$ for $x \in G$ and such that $\hat{x}\hat{y} = \alpha(x,y)\widehat{xy}$, where the book again abusively denotes by α a 2-cocycle representing the class α . By assumption, α restricts to an element in $B^2(H;Z)$, so we may assume that α is constantly 1 on $H \times H$. Therefore, given $y, z \in H$, $\hat{y}\hat{z} = \widehat{yz}$. Denote by \mathcal{R} a set of coset representatives of G/H in G. Then, ever element in G can be written uniquely as xh for some $x \in \mathcal{R}$ and $h \in H$. We now modify our choice of \hat{x} : if $x \in \mathcal{R}$ and $h \in H$, we keep our previous choices of \hat{x} and \hat{h} and set $\widehat{xh} := \hat{xh}$ for all other elements of G. (Recall we may do this via 2.5, as we are working within a cocycle class.) From this choice, we may verify that $\hat{xh} = \widehat{xh}$ for any $x \in G, h \in H$. Thus $\alpha(x, h) = 1$ when $h \in H$. The 2-cocycle identity $$\alpha(x, yh)(^x\alpha(y, h)) = \alpha(xy, h)\alpha(x, y)$$ implies that $\alpha(x, yh) = \alpha(x, y)$ for any $x, y \in G$ and $h \in H$. In other words $\alpha(x, y)$ depends only on the *H*-coset of *y* for the 2nd variable. Thus, the expression $$\mu(x) = \prod_{y \in \mathcal{R}} \alpha(x, y)$$ does not depend on the choice of \mathcal{R} . Now, for $x, y, z \in G$ consider the 2-cocycle identity: $$\prod_{z \in \mathcal{R}} \alpha(x, yz)(^x \alpha(y, z)) = \alpha(xy, z)\alpha(x, y).$$ This gives: $$\mu(x)(^{x}\mu(y)) = \mu(xy)\alpha(x,y)^{[G:H]},$$ and hence $\alpha^{[G:H]} \in B^2(G; \mathbb{Z})$, as desired. **Corollary 2.9.** Let G be a finite group, p prime, P a Sylow p-subgroup of G, and Z an abelian p-group on which G acts. The restriction map $\operatorname{res}_P^G: H^2(G; Z) \to H^2(P; Z)$ is injective. *Proof.* Let m = [G : P], a positive integer which p does not divide. If $\alpha \in H^2(G; Z)$ satisfies $\operatorname{res}_P^G(\alpha) = 0$, then $\alpha^m = 0$ by 2.8, and thus $\alpha = 0$ since taking mth powers is an automorphism of Z, since Z is an abelian p-group. Note that a twisted group algebra $k_{\alpha}G$ does not in general have a basis which is closed under multiplication, but the next proposition shows that it is a quotient of the group algebra $k\hat{G}$ of the central extension \hat{G} of G determined by α . **Proposition 2.10.** Let Z be an abelian group, written multiplicatively, and let $$1 \longrightarrow Z \xrightarrow{\iota} \hat{G} \xrightarrow{\pi} G \longrightarrow 1$$ be a central extension of a group G by Z. For any $x \in G$, choose $\hat{x} \in \hat{G}$ such that $\pi(\hat{x}) = x$ and denote by β the 2-cocycle in $Z^2(G; Z)$ determined by $\hat{x}\hat{y} = \beta(x, y)\widehat{xy}$ for $x, y \in G$. Let $\mu: Z \to k^{\times}$ be a group homomorphism. Then $\alpha = \mu \circ \beta$ is a 2-cocycle in $Z^2(G; k^{\times})$ and the map sending $z\hat{x}$ to $\mu(z)x$ for any $x \in G$ and $z \in Z$ induces a surjective algebra homomorphism $$k\hat{G} \to k_{\alpha}G$$ *Proof.* Since μ is a group homomorphism, applying μ to the 2-cocycle identity for β shows that α satisfies the 2-cocycle identity (or use functoriality). For the last statement, call the map φ . Using centrality, we see: $$\varphi(z_1 \hat{x_1}) \cdot \varphi(z_2 \hat{x_2}) = \mu(z_1) \mu(z_2) x_1 \cdot x_2 = \mu(z_1 z_2) \alpha(x, y) x_1 x_2 = \mu(z_1 z_2 \beta(x_1, x_2)) x_1 x_2 = \varphi(z_1 z_2 \beta(x_1, x_2) \widehat{x_1 x_2}) = \varphi(z_1 \hat{x_1} z_2 \hat{x_2})$$ The book now admits to the confusion of multiplying elements in G and Z together in \hat{G} , as for example, elements of k^{\times} could either be group elements of \hat{G} or scalars of $k\hat{G}$. The book decides to give a name to the inclusion $\iota: k^{\times} \to \hat{G}$ for expressing elements of k^{\times} as elements of group extensions. (Are there more things to note here?) **Proposition 2.11.** Suppose that k is an algebraically closed field. Let G be a finite group which acts trivially on k^{\times} , let $\alpha \in H^2(G; k^{\times})$, and let $$1 \longrightarrow k^{\times} \xrightarrow{\iota} \hat{G} \xrightarrow{\pi} G \longrightarrow 1$$ be a central extension of G by k^{\times} representing α . There is a finite subgroup G' of \hat{G} with the following properties: - (i) We have $\hat{G} = \iota(k^{\times}) \cdot G'$ and $Z = \iota(k^{\times}) \cap G'$ is equal to the subgroup of |G|th roots of unity in k^{\times} . In particular, $|G'| = |Z| \cdot |G|$ and the exponent of G' divides $|G|^2$. - (ii) The inclusion $G' \to \hat{G}$ induces an isomorphism of k-algebras $kG' \cdot e_Z \cong k_{\alpha}G$, where e_Z is the idempotent in Z(kG') defined by $$e_Z = \frac{1}{|Z|} \sum_{z \in Z} z$$ *Proof.* As usual, denote by \hat{x} an inverse image of x in \hat{G} . Then α is represented by the 2-cocycle, abusively (still) denoted α satisfying $\hat{x} \cdot \hat{y} = \alpha(x,y) \widehat{xy}$ for all $x,y \in G$. By 1.10(ii), there exists some map $\mu: G \to k^{\times}$ for which $\beta(x,y) = \alpha(x,y)\mu(x)\mu(y)\mu(xy)^{-1}$ has values in the subgroup Z of all |G|-th roots of unity of k^{\times} . Moreover, we may choose β to be normalized by 2.7. Now, set $\tilde{x} = \mu(x)\hat{x}$. Then, for $x, y \in G$, we have $$\widetilde{x} \cdot \widetilde{y} = \mu(x) \widehat{x} \cdot \mu(y) \widehat{y} = \mu(x) \mu(y) \alpha(x,y) \widehat{xy} = \beta(x,y) \mu(xy) \widehat{xy} = \beta(x,y) \widetilde{xy}$$ Since β is normalized we have $\tilde{1}_G = 1_{\tilde{G}}$, thus: $$G' = \{ \zeta \tilde{x} \mid \zeta \in Z, x \in G \} \leqslant \hat{G}$$ satisfies both $\hat{G} = k^{\times} \cdot G'$ and $Z = k^{\times} \cap G'$, as desired for (i). Now, note that |Z| is necessarily invertible in k^{\times} , therefore the element e_Z as defined above is an idempotent in Z(kG') (recalling from the previous chapter). The inclusion from G' to \hat{G} induces an algebra homomorphism $kG' \to k\hat{G}$. In addition, 2.10 gives us a map sending $\tilde{x} = \mu(x)\hat{x}$ to $x \in G$, viewed as an element in $k_{\alpha}G$ (here, I believe the homomorphism in question for using 2.10 is the trivial one on k^{\times}). Composing these maps yields an algebra homomorphism $kG' \to k_{\alpha}G$. Since the canonical map $\hat{G} \to G$ sends G' onto G (one may check this from the definition of G'), this algebra homomorphism is surjective, and by construction of G', this homomorphism sends every element $z \in Z$ as viewed as an element of G' to 1. Therefore, it sends e_Z to 1, and thus induces a surjective algebra homomorphism $kG' \cdot e_Z \to k_{\alpha}G$. However, |G'|/|Z| = |G|, thus both algebras have the same dimension, and hence are isomorphic.