
1.4: Category Algebras & Cohomology in C

Sam Kim Miller

1 Category Algebras

Category algebras can be seen as a straightforward generalization of group algebras and

monoid algebras. Given a category C and a unital, commutative ring k, we wish to build a

k-module out of the data of C.

We say a category C is small if its class of objects, Ob(C), and class of morphisms, Mor(C),

both form sets, and C is finite if both sets are finite. Note that if MorpCq forms a set (resp.

is finite), then ObpCq necessarily forms a set (resp. is finite) as well. We say C is large if it

is not small, that is, MorpCq does not form a set. One such example of a large category is

Set, due to Russell’s paradox.

Definition 1.1. Let C be a small category. The category algebra kC of C over k is the

free k-module with basis MorpCq, endowed with the unique k-bilinear multiplication defined

for all ϕ, ψ P MorpCq by ϕ ¨ ψ “ ϕ ˝ ψ whenever the composition of morphisms is defined,

and ϕ ¨ ψ “ 0 otherwise.

Equivalently, kC consists of all functions f : MorpCq Ñ k that are zero on all but finitely

many morphisms. Given two such functions f, g, the product g ¨ f in kC is the function

sending α P MorpCq as follows:

α ÞÑ
ÿ

ϕ˝ψ“α

gpϕqfpψq,

The sum is finite by assumption, and is assumed to be zero if the set of indexing pairs is

empty.

A Quick Explanation: In this equivalence of definitions, the function that corresponds to

ϕ P MorpCq considered as an element of kC is as follows:

fϕpαq “

#

1 α “ ϕ

0 α ‰ ϕ

Let’s verify multiplication works as we hope it would. Let ϕ, ψ P MorpCq. If their composition

is well-defined, then ϕ ¨ ψ “ ϕ ˝ ψ P kC. Otherwise, ϕ ¨ ψ “ 0. In the alternative definition,
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we have that the corresponding product fϕ ¨ fψ is given by:

h : α ÞÑ
ÿ

β˝γ“α

fϕpβq ˝ fψpγq.

The only nonzero term in this sum happens precisely when β “ ϕ and γ “ ψ (if possible),

which only occurs when α “ ϕ ˝ ψ, thus h “ fϕ˝ψ when the composition is possible, as

desired.

We note that for any X P ObpCq, the identity morphism IdpXq is an idempotent in kC and

for any two unique objects X, Y P ObpCq, idpXq and idpY q are orthogonal. kC need not be

unital in general, but if C is finite, then kC is a unitary algebra with unit element

1kC “
ÿ

XPObpCq

idX .

We next introduce a few examples of category algebras.

Example 1.2. Group algebras, monoid algebras, and matrix algebras are all examples of

category algebras with the right choice of category.

(a) Let G be a group or monoid. Denote by G the one-object category whose endomor-

phisms are in bijection with the elements of G, and such that composition of endomor-

phisms is equivalent to multiplication in G. The map sending x P G to x P MorpGq

induces an isomorphism of k-algebras kG – kG.

(b) Let n P N` and denote by Mn a category with n objects, X1, . . . , Xn with a unique

morphism ϕi,j : Xi Ñ Xj for each pair pi, jq satisfying 1 ď i, j ď n (so in total, there

are n2 morphisms). Let Ei,j P Matnpkq be the matrix with a 1 in the i, j-th entry, and

0s elsewhere. Then, the map sending φi,j to Ei,j induces an isomorphism of k-algebras

kMn – Matnpkq.

(c) Let pP ,ďq be a partially ordered set (referred to in short by poset). P can be viewed

as a category with a unique morphism x Ñ y for all x, y P P for which x ď y. The

corresponding category algebra kP is called the incidence algebra of P . If P is a

finite poset, note that kP is a subalgebra of kMn and thus isomorphic to a subalgebra

of Matnpkq. For example, Exercise 1.4.14 notes that the category algebra arising from

the totally ordered set t1, 2, . . . , nu is isomorphic to the algebra of upper triangular

matrices.

Remark 1.3. Every k-algebra A can be obtained as a quotient of a monoid algebra. We do

so as follows: take the multiplicative monoid pA, ¨q with a map kAÑ A given by evaluation

(the book calls this the “obvious map,” and it is indeed obvious if you try writing an element

of kA). There is a similar notion for category algebras; for a finite-dimensional algebra A

over an algebraically closed field k, there is a canonical choice of category C with finitely
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many objects such that A – kC{I for some ideal I. The book notes that I in general cannot

be chosen canonically, but this leads to the notion of a quiver of an algebra, see chapter 4.9

for more details.

A category algebra is never “far off” from a semigroup algebra (an algebra obtained from a

semigroup). We perform the construction is as follows: given a category C with at least two

objects, define a semigroup S by adjoining a zero element. Precisely, set S “ MorpCq Y tνu
with ν ¨ ϕ “ ν “ ϕ ¨ ν for all ϕ P S. For ϕ, ψ P MorpCq, ϕ ¨ ψ “ ϕ ˝ ψ if the composition is

defined, and ϕ ¨ ψ “ ν otherwise. Then kν is an ideal in kS and there is an isomorphism

kC – kS{kν.

Recall: Given two categories C and D, an equivalence of categories C, D consists of a

covariant functor F : C Ñ D which is:

• Full : For allX1, X2 P ObpCq, the map induced by HomCpX1, X2q Ñ HomDpF pX1q, F pX2qq

is surjective.

• Faithful : For allX1, X2 P ObpCq, the map induced by HomCpX1, X2q Ñ HomDpF pX1q, F pX2qq

is injective.

• Essentially Surjective: For all Y P ObpDq, there exists some X P ObpCq for which

F pXq – Y .

Equivalently, F : C Ñ D is an equivalence of categories if there exists some covariant functor

G : D Ñ C for which FG – 1D and GF – 1C.

A covariant functor between small categories Φ : C Ñ D induces a unique k-linear map

ϕ : kC Ñ kD. Take caution, however! This map need not be an algebra homomorphism!

For example, using 1.2, note that all objects in Mn are isomorphic and hence there is a unique

equivalence of categories Mn Ñ M1, sending each object of Mn to the unique object of M1

and all morphisms to the unique morphism (more generally, any category is equivalent to its

skeleton). This induces a k-linear map Matnpkq Ñ Mat1pkq – k, which sums the elements

of the nˆ n matrix, but this map is clearly not multiplicative unless n “ 1.

Proposition 1.4. Let C,D be small categories and Φ : C Ñ D a covariant functor. Let

α : kC Ñ kD be the unique k-linear map induced by Φ. Then α is a k-algebra homomorphism

if and only if the object map induced by Φ, ObpCq Ñ ObpDq is injective. Moreover, if

ObpCq,ObpDq are finite, then α is a unital k-algebra homomorphism if and only if Φ induces

a bijection ObpCq – ObpDq.

Proof. First, suppose Φ is not injective on objects. Let X,X 1 be two different objects in C
such that ΦpXq “ ΦpX 1q “ Y P ObpDq. Then idX ¨ idX 1 “ 0 in kC, so ΦpidX ¨ idX 1q “ 0 in kD.

However, ΦpidXq¨ΦpidX 1q “ idY ¨idY “ idY ‰ 0, and thus, α is not multiplicative. Conversely,

suppose Φ is injective. Then for all ϕ, ψ P MorpCq such that Φpϕq,Φpψq are composable in
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D, the morphisms ϕ, ψ are composable as well by injectivity. Thus, αpϕ ¨ ψq “ Φpϕ ˝ ψq,

hence α is multiplicative.

Finally, the last statement regarding unitality of α can be observed from the fact that the

unit elements of kC and kD are equal to
ř

XPObpCq idX and
ř

Y PObpDq idY respectively.

We wrap up this first section by drawing an equivalence between category algebras kC and

functors from C to the category of k-modules, kMod, when ObpCq is finite. (We deviate

from the textbook notation a bit because I feel like it.)

Recall: Denote by DC the functor category, whose objects are functors C Ñ D, and

whose morphisms are given by natural transformations. Composition is defined by vertical

composition of transformations, see Riehl’s Category Theory In Context, chapter 1.7 for a

more complete discussion. We note if C and D are small (resp. finite), then so is DC.

A k-linear category is a category C whose morphism sets have a k-module structure such

that composition is k-bilinear. A k-linear functor is a functor between k-linear categories

which is k-linear on morphism sets.

Theorem 1.5. Let C be a small category with finite object set. There is a k-linear equiva-

lence kCMod – kModC.

The proof supplied by the book skips over some key details in the proof, namely, all the

details about the morphism maps of the constructed functors. We will fill in the blanks

regarding the morphisms, but not perform a complete proof as those details end up being

rather lengthy.

Proof. Let M be a left kC-module. We first construct the forward direction of the equivalence

by defining a functor FM : C Ñ kMod as follows: for each object X in C, set FMpXq :“

idX ¨M . For each morphism ϕ : X Ñ Y in C note that ϕ “ idY ˝ϕ “ ϕ ˝ idX . Therefore, for

any idX ¨m P idX ¨M ,

ϕ ¨ pidX ¨mq “ pϕ ˝ idXq ¨m “ pidY ˝ϕq ¨m “ idY ¨pϕ ¨mq P idY ¨M,

Hence, the action of ϕ on M induces a unique k-linear map FMpϕq : idX ¨M Ñ idY ¨M ,

and through this assignment, FM is a functor. Note that F is contravariant, as the order of

composition is reversed under this assignment. Call this assignment ρ.

(Sketch) ρ maps kC-module homomorphisms to natural transformations of functors C Ñ
kMod as follows: given two kC-modules M,N and a module homomorphism f : M Ñ M 1,

we define the natural transformation ρpfq : FM Ñ FN by:

ρpfqX : FMpXq Ñ FNpXq, idX ¨mÑ idX ¨fpmq

It follows immediately that by kC-linearity of f , we obtain the commutative diagram:
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FMpXq FNpXq

FMpY q FNpY q

FM pϕq

ρpfqX

FN pϕq

ρpfqY

Hence ρpfq is indeed a natural transformation. With some work, we may verify that the

assignment is functorial with respect to ρ, and that the map is k-linear (details omitted).

Thus, the assignment M ÞÑ FM defines a k-linear functor ρ : kCMod Ñ kModC.

Conversely, given some functor F : C Ñ kMod, we define a kC-module MF by setting

MF “
à

XPObpCq
F pXq,

and for any morphism ϕ : X Ñ Y in C and m P F pZq, we define the kC-module structure

on MF by setting ϕ¨m “ pF pϕqqpmq if Z “ X and ϕ¨m “ 0 if Z ‰ X. Call this assignment σ

(Sketch) σ maps natural transformations of functors C Ñ kMod to kC-module homomor-

phisms as follows: given two functors F,G : C Ñ kMod, and a natural transformation

α : F Ñ G with corresponding morphisms αX : F pXq Ñ GpXq, we define a kC-module

homomorphism σpαq : MF ÑMG by:

σpαq : MF ÑMG,
ÿ

XPObpCq

xC ÞÑ
ÿ

XPObpCq

αXpxCq

With some work, we verify that this is indeed a module homomorphism and k-linear (details

omitted). Thus, the assignment F ÞÑ MF defines a k-linear functor σ : kModC
Ñ kCMod

(this requires verification).

Now, we verify these functors witness an equivalence of categories; in fact, they are inverse.

We will show this for objects only here. We first verify that ρ ˝ σ is the identity functor on

kModC. We have:

ρ ˝ σpF qpXq “ FMF
pXq “ idX ¨

à

XPObpCq
F pXq “

à

XPObpCq
F pidXqpF pXqq “ F pXq

Hence ρ ˝ σ is the identity functor. Next, we recall that idX is an idempotent and 1kC “
ř

XPObpCq idX . Therefore,

M “
à

XPObpCq
idX ¨M.

We now verify σ ˝ ρ is the identity functor on kCMod:

σ ˝ ρpMq “MFM
“

à

XPObpCq
idX ¨M “M.

We omit the proof that the composition of σ, ρ form the identity functors on morphisms.

Thus, σ and ρ form an equivalence of categories, as desired.
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2 Twisted Category Algebras & Functor 2-Cohomology

There is a twisted version of category algebras that is analogous to twisted group algebras.

The following definition is a particular case of low degree functor cohomology; when spe-

cialized to the groupoid G of a group G this yields the corresponding concepts studied in

chapter 1.2.

Definition 2.1. Let C be a small category and M an abelian group, written multiplicatively.

A 2-cocycle of C with coefficients in M is a map α sending any two morphisms ϕ, ψ in

C for which the composition ψ ˝ ϕ is defined to an element αpψ, ϕq P M such that for any

three morphisms ϕ, ψ, τ in C for which the compositions ψ ˝ϕ and τ ˝ψ are defined we have

the 2-cocycle identity

αpτ, ψ ˝ ϕqαpψ, ϕq “ αpτ ˝ ψ, ϕqαpτ, ψq

in M . The set of 2-cocycles of C with coefficients in M is denoted by Z2pC;Mq, an abelian

group with product induced by M .

A 2-coboundary of C with coefficients in M is a map β sending any two morphisms

ϕ, ψ P C for which ψ ˝ ϕ is defined to an element βpψ, ϕq P M such that there exists a map

γ : MorpC ÑMq satisfying

βpψ, ϕq “ γpψqγpϕqγpψ ˝ ϕq´1.

The set B2pC;Mq is a subgroup of Z2pC;Mq and the quotient group

H2
pC;Mq “ Z2

pC;Mq{B2
pC;Mq

is the second cohomology group of C with coefficients in M .

Definition 2.2. Let C be a small category and α P Z2pC; kˆq. The twisted category

algebra of C by α is the k-algebra, denoted kαC, which is equal to kC as a k-module,

endowed with the unique k-bilinear product kαCˆkαC Ñ kαC defined by ψϕ “ αpψ, ϕqψ ˝ϕ

if the composition ψ ˝ ϕ is defined, and ψϕ “ 0 otherwise.

Theorem 2.3. Let C be a small category and α, β P Z2pC; kˆq. The following hold:

1. The k-algebra kαC is associative.

2. For any morphism ϕ : X Ñ Y in C, we have αpidY , idY q “ αpidY , ϕq “ αpϕ, idXq “

αpidX , idXq.

3. There is an isomorphism kαC – kβC mapping a morphism ϕ P C to γpϕqϕ for some

map γ : MorpCq Ñ kˆ if and only if the images of α and β in H2pC; kˆq are equal.
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Proof. The proof follows essentially the same as the proofs of the analogous theorems in

1.2.

Like in the case of groups, second cohomology groups of categories are related to extensions

of categories - see the references provided by Linckelmann.

Remark 2.4. If C is such a category such that the sets HomCpX, Y q already have a k-

module structure and such that composition in C is bilinear, then there is no need to lin-

earize the homomorphism sets again; one can define an algebra by taking the direct sum
À

X,Y PObpCq HomCpX, Y q with product induced by composition of morphisms. Theorem 1.4.4

applies in this situation if ObpCq is finite: a k-linear functor F : C Ñ kmod defines a module
À

XPObpCq F pXq.

3 Exercises

Exercise 3.1. Let k be a field and C a finite category. Show that if C has at least two

morphisms, then kC is not a division ring; that is, kC has a nonzero noninvertible element.

Proof. In the case where C has more than 1 object, for any object X consider the element

1X P kC. There does not exist any f P MorpCq such that 1X ¨ f “ 1Y or f ¨ 1X “ 1Y , for any

Y ‰ X. Then by linear independence of morphisms, for all α P kC, α ¨ 1X and 1X ¨α cannot

have nonzero 1Y coefficient in its expansion; hence α cannot be the unit of kC. Thus, f is

noninvertible in kC.

Otherwise, if C has 1 object but is not a groupoid, then there exists a non-invertible

f P MorpCq, i.e., for all g ‰ f , g ¨ f ‰ 1X ‰ f ¨ g. Then by linear independence of

morphisms, for all α P kC, α ¨f and f ¨α cannot have nonzero 1X coefficient in its expansion;

hence α cannot be the unit of kC.

Otherwise, C is a 1-object groupoid, hence a group. Then consider the element ϕ
ř

fPMorpCq f P

kC. We observe that for any g P MorpCq, g ¨ϕ “ ϕ ¨ g “ ϕ. Therefore, for any element of kC,

written as a k-linear combination
ř

fPMorpCq aff , we have

¨

˝

ÿ

fPMorpCq

aff

˛

‚ϕ “

¨

˝

ÿ

fPMorpCq

af

˛

‚ϕ

Since ϕ has multiple nonzero coefficients in its expansion, but the unit element only has one,

ϕ cannot be invertible. (Note that this construction does not necessarily yield a noninvertible

element for non-groupoids, a 2-element monoid yields a counterexample.)
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