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1 Introduction

Suppose we have some checkers placed in the lower left corner of a Go board, and we wish to move
them to the upper right corner in as few moves as possible. There are no opponent pieces present,
and the pieces move as they would in the game of Chinese Checkers, where for one move, a piece
may either shift one unit in any direction, or repeatedly leapfrog over other pieces.

Let us consider the Go board as a subset of the non-negative integer lattice Z2. As an example,
suppose we have four pieces placed at the coordinates (0,0), (1,0), (0,1), and (1,1), and wish to
move them to the squares (9,9), (10,9), (9,10), and (10, 10). For the pieces to complete the task
in as few moves as possible, the pieces must first be moved into a configuration such that they may
jump over each other in an optimal way.

We may intuitively attempt lining the checkers up diagonally in what we will call a snake con-
figuration, that is, moving the pieces to coordinates (0,0), (1,1), (2,2), and (3, 3). By repeating the
three-move process of shifting the backmost piece to the right [(0,0) — (1,0)], leapfrogging that
piece to the front [(1,0) — (3,4)], then shifting it right again [(3,4) — (4,4)], we can reach our
destination in 4 +4 + (3 X 7) = 29 moves.

However a faster method exists. We first move the pieces into what we call a serpent configu-
ration, with the pieces on coordinates (0,0), (1,0), (1,1), and (2,1). Then we repeat the two-move
process of leapfrogging the backmost piece to the front [(0,0) — (2,2)] then leapfrogging the new
backmost piece to the front again [(1,0) — (3, 2)], we may reach our destination in 1+1+(2x8) = 18
moves. This is indeed the fastest way of moving the checkers from the bottom left to the upper right.

We define a measure of the movement efficiency of a placement of pieces, and it may be shown
that under this measure, the serpent is the most efficient configuration possible. In fact, it was
shown by Auslander, Benjamin, and Wilkerson that the serpent configuration is maximally efficient,
with only three configurations attaining this efficiency. For any non-maximal configurations, their
efficiency was conjectured to have a strict upper bound, which we prove. [1]

2 Abstracting the game

Suppose we have p indistinguishable pieces and wish to move them in the positive direction over
the integer lattice Z™. If a piece is located at coordinate | € Z", and some other coordinate [ + e;



is not occupied by a piece (for unit vector e;), then the piece may shift there. Alternatively if I +e;
is occupied but [+ 2e; is not, the piece may hop over the occupant of [+ e; to land at [ + 2¢;, where
it may remain or continue hopping over other adjacent pieces. One legal move consists of either a
shift or a jump, a sequence of one or more hops by a single piece.

Figure 1: An example of the serpent’s 2-move trajectory, consisting of 2 jumps. The placements
in the leftmost and rightmost diagrams are translates, and represented by the same configuration,
the serpent. These two placements have displacement 2, and require 2 moves to reach one from the
other. Hence, the serpent is speed-of-light, i.e. it has speed 1.

Define a placement of size p as a finite subset of Z"™, denoted by X = {Z1,...,Z,}. Define the
centroid of placement X to be
P
> &
u=1

For placements X,Y, define their displacement as

co(X) =

=

d(X,Y) = |e(X) = ei(Y)]
i=1

For m > 1, an m-move trajectory Xo, X1,..., X;n is a sequence of placements where X, 1 is
reachable from X, in a single legal move. The speed of an m-move trajectory from X to X, is

d(Xo, Xm)
—

We say that placements X, Y are translates if there exists @ € Z'™ such that X +d =Y. X and
Y are represented by the same configuration of pieces, and we define the speed of a configuration
C to be the maximum speed attained by any trajectory between two translates represented by C.

Auslander, Benjamin, and Wilkerson proved in 1993 the following: the maximum speed of any
configuration C is 1, and that only three configurations (called speed-of-light configurations) attain
this ”speed of light” for d > 1. [1] These configurations are:

o The atom {z} (if p=1)
e The frog {z, x +¢;},1 <i<n (if p=2)

o The serpent {z, z+¢;, z+e;+ej,z+2¢;+e;} 1<i#j<n(fp=4andd>1)



It was conjectured that the maximum attainable speed for any configuration on p # 1,2,4 is
2/3, which we may observe is attained by the snake configuration with any number of pieces. [1]
We will show that 2/3 is indeed the maximum possible speed attainable for any non-speed-of-light
configuration in any dimension n > 2.

3 Definitions and Properties
Let m € Z and placement X € Z". Then border l,, is defined by:
Il ={z € X :||z|]| =m}

For a placement X, we may define the tail (respectively, head) of X, by t(X) = min,, |l,,| > 0 (re-
spectively, h(X) = max,, |l,| > 0). Define the width of a placement X w(X) = h(X)—t(X)+1. De-
fine the back border (respectively, front border) of X as T'(X) := lyx) (respectively, H(X) := l(x))-

We now define an underlying configuration which reoccurs in optimal play. A ladder of length
k > 0 is subset of a placement X: L = {po,p1,...,px} C X such that pg is able to hop over p1, ..., pg
successively. If {po} = T'(X) and pr, € H(X), then we say L is a true ladder of X. We call the
move consisting of py jumping over the rest of the ladder pieces a climb, call py the base of the
ladder, and the other pieces the rungs.
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Figure 2: An example of a placement X which contains a ladder. The ladder is {po, 1, p2, P3, P4},
with pg is the base of the ladder, and the other pieces are the rungs. Here {po} = T(X) and
{ps} = H(X), so the ladder is a true ladder of X. X has width 8.

Proposition 3.0.1. If a configuration X contains a true ladder L, X has even width.

Proof. Observe that when a piece p hops over another piece p’, p either increases or decreases
what border it belongs to by 2. Therefore since lo jumps from Byx) to Bj(x)41, this implies
h(X)+1—t(X) is even. O

Proposition 3.0.2. A placement X with n > 1 pieces can perform a move that simultaneously
increases t(X) and h(X) if and only if it has a true ladder.



Proof. ( <= )Performing a ladder climb increases both ¢(X) and h(X), as lp moves from T'(X),
leaving that border empty, and jumps in front of [, € H(X), thus advancing the front border.

(=) If a move on X exists that advances the front and back borders forward, since only one
piece can change positions, the back border must only have one piece, and it must be the piece
which moves. Call this piece p. Since n > 1 w(X) > 1, so p must jump from 7'(X) to in front
of H(X). Denote the sequence of pieces hopped over by p by p1, pa, ... pg. Since py € H(X),
{po,p1, .., Pr} is a true ladder. O

We may classify possible moves into seven categories.

e Ascent: A move that increases h(X) and ¢(X). If p > 1, this is necessarily a ladder climb.
e [Front Push: A move that increases h(X) but not ¢(X).

e Back Push: A move that increases ¢(X) but not h(X).

e Dead Move: A move that changes neither the tail nor head of X

e Front Retreat: A move that decreases the head of X

e Back Retreat: A move that decreases the tail of X

e Reverse Ascent: A move that decreases both the head and the tail of X.

For example, in the previous configuration, pg climbing the ladder would be an ascent. py shift-
ing to the right would be a front push. pg jumping over p; and ps only would be a back push. ps
shifting in any direction would be a dead move.

An ascent is necessarily a ladder climb for nontrivial placements. For a legal m-move trajectory
M = {Xo, X1, ..., X;n}, where X is a translate of X, define the moveset of M as a collection of
moves m(M) = {xg = x{, ... ,Tm—1 —> X}, 1}, where z; is the location of the piece that moves in
X, and z is the location of the moved piece in X;41.

Proposition 3.0.3. In any moveset, the total number of front pushes, back pushes, front retreats
and back retreats which occur between two ascents must be even.

Proof. Since ascents can only occur when a configuration has even width, the configurations imme-
diately before and after any ascents must have even width. Therefore, the number of moves between
two ascents which change the width parity must be even. The four listed move types are the only
move types which change the parity of the width of a configuration, so the result follows. O

For a move trajectory M, let A(M) represent the number of ascents in m(M), FP(M) repre-
sent the number of front pushes, BP(M) the number of back pushes, DM (M) the number of dead
moves, FR(M) the number of front retreats, BR(M) the number of back retreats, and RA(M) the

number of reverse ascents.



Now, define the efficiency w(M) of a trajectory M or it’s corresponding moveset m(M) as
follows:

w(M) := A(M)— (1/2)- (FP(M)+ BP(M))—2-DM(M) — (7/2)- (FR(M) + BR(M)) —5- RA(M)

Additionally, call the coefficient corresponding to each move type the move weight. If a sequence
of moves are performed, then the weight of the sequence is the sum of all the move weights. If we
partition a trajectory M = M; @& Mo @ ... & My, then w(M) = w(My) + ... + w(My).

Lemma 3.1. A m-move trajectory M of a configuration C has speed greater than 2/3 if and only
ifw(M)>0

Proof. Since the move types are mutually exclusive, A(M)+FP(M)+BP(M)+DM(M)+FR(M)+
BR(M) + RA(M) = m. Additionally, the displacement of M can be characterized by A(M) —
RA(M)+ (1/2) x (FP(M) — FR(M)+ BP(M) — BR(M)). Therefore the speed of M is

A(M)— RA(M)+ FP(M)/2— FR(M)/2+4+ BP(M)/2 — BR(M)/2
A(M)+ FP(M)+ BP(M)+ DM (M) + FR(M) + BR(M) + RA(M)"
It is straightforward to check:
AM)—- RA(M)+ FP(M)/2 - FR(M)/2+ BP(M)/2— BR(M)/2
A(M)+ FP(M)+ BP(M)+ DM(M)+ FR(M) + BR(M) + RA(M)

2/3 < = 0<w(M)

O

We next introduce an important theorem which, as a corollary, demonstrates that most movesets
do not have speed greater than 2/3.

Theorem 3.2. For any trajectory M with no two ascents occurring in a row and not both beginning
and ending with an ascent, w(M) < 0.

Proof. After an ascent, if a front push, back push, front retreat, or back retreat occurs, this changes
the width of the placement, and since prior to the first move the placement had even parity, for
another ascent to occur, another one of the listed moves must occur.

Without loss of generality let us assume M begins with an ascent, therefore it cannot end with
one. Let us partition the moveset m(M) into separate blocks By, ..., By where each block begins
with an ascent and contains no other ascents. Since no two ascents can occur in a row, each block
must consist of at least two moves. Additionally since each new block must begin with an ascent,
a block must end with a placement with even width.

B; contains one ascent and at least one other move a. If a is any type of move besides a front or
back push, w(B;) is negative. Otherwise, if @ is a front push or back push the resulting placement
has odd width and another front push, back push, front retreat, or back retreat must occur. This
implies w(B;) < 0, with equality holding only when B; is of the form {A, FP/BP, FP/BP}. Since
B;<0foralll<i<k w(M)<O0, as desired.

O

Since we know that the maximum speed of a configuration is 1, and we are looking at non-
maximal configurations, every moveset has at least one non-ascent moves. Therefore, we will
assume for the remainder of this paper that the last move in any moveset is not an ascent.



4 p=1,24

For a configuration which is not speed of light, observe that it may reach speed arbitrarily close to
speed 1 by first shifting into a speed-of-light configuration, repeating its set of moves sufficiently
long, then moving back to the original configuration. We will consider only trajectories which
do not use this strategy. Rigorously, if a trajectory between translates does not perform any
moves corresponding to any ”speed-of-light” configuration’s optimal moveset, call the corresponding
configuration non-speed-of-light.

Theorem 4.1. A non-speed-of-light configuration C' with 1, 2, or 4 pieces cannot have speed
greater than 2/3.

Proof. There is only one configuration with 1 piece which is speed of light, so p =1 is true.

For p = 2, any trajectory containing a jump (which must be an ascent) must contain the frog’s
optimal trajectory (a jump), therefore any non-speed-of-light configuration is limited to only shifts.
Therefore, the optimal trajectory of C' cannot contain any ascents, thus C' cannot have speed greater
than 2/3.

For p = 4, if C has optimal trajectory without two ascents in a row, C has speed at most 2/3.
Suppose then that C' has two ascents in a row, without loss of generality let us assume its trajectory
begins with two ascents. C' must have even width, and every border must contain a piece due to
the parity of the ends of each successive ladder. Since C' can perform two ascents in a row, it has
width 4. C = {p1,p2,p3,ps} With p; on l;. Say p; has jump p; 22 a1 24 4y for open locations
a1, as. d(p1,p2) = 1, d(a1,p2) = 1, and d(a1,ps) = 1. Similarly, write the next move by py as
P2 :p_3> bl ﬂ) bg. d(pg,p?,) =1 d(p37b1) = 1, and d(ag,bl) =1.

Suppose p1, p2, and py are colinear (p; on x, ps on x + u;, py on x + 3u;), ag = = + 4u; and
a1 = x + 2u;. However for py to jump over p3 and p1, it must start on a;, a contradiction. Say p;
starts on x, po on x+wu;, then a; is x+2u;, ps starts on x+2u;+u;, and ay is ©+2u; +2u;. There are
only two locations both adjacent to p; and 2 away from as, a; and = + u; 4+ u;. However if ps is on
z+u;+u; and we perform the two ascents, we have performed the serpent configuration’s trajectory,
a contradiction. These cases are visualized in figure 3 Thus it is impossible for a non-speed-of-light
configuration C' to have two ascents in a row, so C' must have speed at most 2/3. O

5 p=3
Theorem 5.1. No configuration of 3 pieces C' exists with speed greater than 2/3.

Proof. To show this, we will demonstrate that no placement X exists for p = 3 such that two
successive ascents are possible. If X has two or three pieces occupying the same border, then the
back or front border has two pieces, rendering successive ascents impossible. Otherwise assume X
has pieces occupying all different borders. The only possible way for X to be able to perform a
ladder climb is if it has width 4, since a piece jumping over two other pieces can travel distance at
most 4. Let us consider the four borders passing through X, without loss of generality say I; — l4.
1 and 4 must contain one piece each, p; and ps respectively, implying the last piece, ps can either



Figure 3: In the case of p = 4, we cannot place p3 without a contradiction.

Figure 4: After a jump, p is isolated and cannot jump.

lay on Iy or l3. If py lies on I3, p; cannot jump. Otherwise, ps lays on l5. If p; can perform an

ascent, the pieces now lay on ls, l4, and l5, which implies po cannot jump, as in figure 4.
Therefore no placement X with p = 3 pieces exists such that two consecutive ascents can be

performed, as desired. No such configuration of Z™ exists with speed greater than 2/3. O

6 p >4 for 72

We provide a proof that no configuration of greater than 4 pieces has a speed greater than 2/3 in
the 2-dimensional case. The details are less cumbersome than in the general case, but the basic
idea of the proof in the general case remains the same. For this section, we will work only in Z2.
Recall that if a moveset has no consecutive ascents, by Theorem 3.2, the moveset has speed at most
2/3, so our focus will be on movesets which have consecutive ascents.

Lemma 6.1. For p > 4, there does not exist a configuration with a moveset containing more than
3 consecutive ascents.

Proof. Suppose for contradiction that there exists a configuration C' with moveset containing more
than 3 consecutive ascents. Then there can only be one piece on each of the four backmost borders.



Additionally, the width of C prior to moving must be at least 6. It follows that without loss of
generality, we can assume the first four pieces which ascend are located at (0, 0), (1,0), (1,1),& (2, 1),
as in figure 5.

Figure 5: The back borders of C before any moves on the left, and after the first three ascents on
the right.

However, after the first 3 ascents, the piece at (2, 1) p4 is not adjacent to any pieces and therefore
cannot ascend, a contradiction. O

Define a piece’s measure by taking its location modulo 2, (1, x2, ...z, )2. For example, py in the
above diagram has measure (0,1). Note that when a piece jumps, its measure stays constant. This
restricts the number of locations in Z? a piece can jump to, given its starting position.

We assume without loss of generality that a moveset M begins the maximum number of ascents.
Note that this implies M ends in a non-ascent. Define an isolating partition of M as follows. First,
partition m(M) sequentially into blocks Aj,...Ax such that each block begins with two or more
consecutive ascents, but does not have consecutive ascents anywhere else and does not end with
an ascent. So each new block begins at every occurrence of a sequence of two or more consecutive
ascents, and ends with a non-ascent. This partition of M is unique.

For an example, if a configuration had moveset of type
{A,A,A,FP,DM,BP,A,A,DM,DM, A, FP, BP},
then the moveset would be partitioned into blocks
A ={A, A A FP,DM,BP}, As={A, A, DM,DM,A, FP, BP}.

Let L(A;) be the number of ascents A; begins with. By Lemma 6.1, L(4;) < 3. Since A; ends
with a non-ascent, w(A;) < L(A;). We wish to show w(A4;) <0 for all ¢, since w(M) =w (> A4;) =
> w(A;). Hence if w(A;) <0 for all 4, then w(M) < 0. So it suffices to only consider blocks rather
than entire movesets. Since A; can only begin with 2 or 3 ladder climbs, we only have these two
cases to consider.



Call a block A; for which w(A4;) < 0 suboptimal. Recall that

Lemma 6.2. If a consecutive sequence of moves S C A; satisfies w(S)+L(A4;) < 0, then necessarily,
w(A;) <0, and thus A; is suboptimal.

Proof. We may assume without loss of generality that S does not begin with an ascent, since if it
does, then removing the initial ascents produces another consecutive sequence of moves satisfying
the same condition. We may also assume that the move following S is an ascent or the end of the
block, since otherwise, we may extend S until the move following it is an ascent.

Now, partition A; into smaller blocks in the following way: let the first block contain all consec-
utive initial ascents, with the exception of the last one. Then, until the beginning of S is reached,
partition the moves so each block begins with a non-ascent and continues until an ascent is reached,
and let the block end with an ascent. Each of these blocks will contain exactly one ascent and
contain at least one non-ascent, since A; only contains one sequence of consecutive ascents. By
assumption, the last move before S begins is an ascent, so this partitioning continues until S is
reached. Let S be the next block. Then, partition the remaining moves in the same way as in
the proof of Theorem 3.2, that is, by letting each block begin with an ascent and continuing until
another ascent is reached. These blocks will also only contain one ascent.

By the same arguments used in the proof of Theorem 3.2, all blocks B which are not the first
block and S satisfy w(B) < 0. Since the only blocks remaining are S and the first one, which has
weight L(A;), by summing the weights of each block, we conclude that w(A4;) < 0. O

Call S a suboptimal sequence of mowves, and call any consecutive sequence of moves S that is
not suboptimal optimal. For example, if 2 ascents were followed by 4 front pushes, the four front
pushes would be a suboptimal sequence of moves, and the block A; would therefore be suboptimal.
Our strategy is to show that any block A; must contain a suboptimal sequence of moves.

Lemma 6.3. If a block A; begins with exactly three ascents, w(4;) < 0.

Proof. Observe that if A; begins with exactly three consecutive ascents, the initial placement is
forced to have a serpent configuration at the back, and after the three ascents, the resulting con-
figuration is forced to have a serpent configuration in the front, as demonstrated in figure 6.

By considering move weights, it suffices to demonstrate that a consecutive sequence of moves
in A; occurs with weight —3, that is, a suboptimal sequence of moves must occur. Clearly if six
non-ascents occur between two ascents, then the condition is satisfied. Note that if five non-ascents
occur between two ascents, a sixth must occur by proposition 3.0.3. Alternatively, if two dead moves
occur or one dead move and one front/back push occurs, the condition is also satisfied for the same
reasoning. Finally, any front retreat, back retreat, or reverse ascent immediately is suboptimal.

Call the border containing the backmost piece prior to moving l;. We first consider two cases,
if [4 has exactly 1 piece or if I4 has two or more pieces.

If I4 has two or more pieces, first suppose the next ascent occurs from I4. This implies that one
of the pieces on l4 must front push or dead move from I first. Observe that an ladder climb to the
front from l4 cannot be performed unless p or ps moves, since the pieces from I4 can only hop over
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Figure 6: The borders before, respectively after, the borders indicated by red in the above diagrams
are forced placements. An x indicates a location a piece cannot be located in that board state.

p1 and p3 by parity. If a piece from 4 dead moves, then since an ascent can still not occur, another
move must be made before an ascent is possible, so since a dead move and one more non-ascent has
been performed, there is a suboptimal sequence of moves.

Therefore, a possibly optimal sequence of moves must have a piece from [, make a front push
before the other performs the ascent. A front push consists of a ladder climb from I4 to beyond the
front border, but one of p or po must move before that is possible. If p or po performs a dead move,
then after the ladder climb from l4, a suboptimal sequence of moves will be forced to occur before
the next ascent.

If p or ps ladder climbs to perform a front push, a ladder climb from [, still cannot be per-
formed, so necessarily, a front push must occur by the piece that previously moved. After this, it
may be possible for a piece, call it p’ from Il to front push. The only optimal move afterwards is
another front push, and since the remaining piece on Iy can only hop over p; and ps3 in the front
borders, for an ascent to be possible, p’ must front push. If an ascent is not possible, then since four
front pushes have occurred and another non-ascent must occur, a suboptimal sequence of moves
must happen. Otherwise, suppose an ascent from [, happens. The sequence of moves performed is
A A A FP,FP,FP,FP, A, and the sequence of moves after the consecutive ascents has weight -1.
Now, if a new sequence of moves of weight -2 occurs, the total sequence will be suboptimal.

From the initial configuration, figure 6, it is necessary that either the pieces on I, were either
farther than distance 2 away, or were distance 2 away, but must have hopped over separate pieces.
Thus, there are 2 pieces on l5. If the next ascent occurs from 5, the border beyond ps3 is empty
and requires a piece there to build a ladder. This border cannot be filled by a back push since I5
has 2 pieces, and thus, a dead move must occur before the ascent, forcing a suboptimal sequence
of moves. Otherwise, if the next ascent occurs from beyond [5, since a ladder climb from I5 to the
front is impossible, a dead move must occur when bring the pieces on l5 forward, again, forcing

10



suboptimality. We conclude that if {4 began with 2 or more pieces, and the first ascent after the
three initial ones occurred from l4, there is suboptimal sequence of moves.

Otherwise, suppose [, contains at least 2 pieces, and the first ascent after the initial three hap-
pens beyond ly. In this case 4 must be cleared, but neither piece can front push (a ladder climb
to in front of p3). If one piece dead moves forward and the other front pushes, then a suboptimal
sequence of moves occurs. Otherwise, if no dead move occurs, then necessarily, one of p or ps front
pushes twice to open the ladder, then a piece front pushes from [y, and another back pushes to
clear l4. However by a previous argument, there must be at least 2 pieces on [5, so another move
must occur before an ascent can. Since 5 moves have occurred, suboptimality is forced. Thus, if I4
began with at least 2 pieces, a suboptimal sequence of moves must occur.

Now, suppose [, has one piece. The back of the initial configuration must necessarily must be
in the situation in figure 7:

9=
®

Figure 7: The left diagram is the initial configuration, and the right diagram is the configuration
after the three consecutive ascents.

If the next ascent occurs on Iy, then again, p is forced to dead move, and since p4 is isolated,
another piece must move to be adjacent to it. If these are separate moves, then two dead moves
have been performed, a sequence of moves with weight —4. Otherwise, suppose these are the same
move, so py ascends right after. Then there is a new serpent configuration at the front, and two
pieces on l5, namely ps and the piece py hopped over to ascend (which is necessarily p as in figure
6), as pictured in figure 8.

Since the previous two moves have weight —1, it suffices to show the next sequence of moves
must have weight —2. Thus it suffices to assume no dead move can occur. Note that the parity is
correct for an ascent to occur, as the pieces on l5 can hop over ps and p4, but given the front of
the configuration, no ascent can occur. At least two front pushes (or a dead move) must occur in
the front borders before one of the pieces on I5 can climb to the front. However, this is three front
pushes, implying a fourth front or back push must occur before an ascent can occur, so there must
be a sequence of moves with weight —2 if the next ascent is to occur from I5.

11
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Figure 8: The configuration after ps ascends, in the case where [4 has one piece and the next ascent
follows from ly. There are necessarily two pieces on l5 and a serpent configuration in the front
preventing an ascent from occurring.

Otherwise, if the next ascent happens beyond I5, it is straightforward to see that a sequence of
moves must first occur with weight —3, and we conclude that in any case, w(A4;) < 0. O

Lemma 6.4. If a block A; begins with exactly two ascents, w(4;) < 0.

Proof. By considering move weights, it suffices to demonstrate that a sequence of moves in A; after
the two ascents occurs with weight -2, that is, a suboptimal sequence of moves must occur. In
particular, it suffices to show either a dead move occurs or 4 front or back pushes occur between
ascents. However, by proposition 3.0.3, it suffices to show only 3 front or back pushes occur rather
than 4. First observe that the starting and ending configurations after the two ascents must be as
follows at the front and back borders respectively, pictured in figure 9.

Call the border containing the piece p; which is furthest back l;. We begin by considering two
cases, if [3 has exactly 1 piece, ps, or if it has multiple pieces ps and p§. Then, we consider sub-cases
and determine that any trajectory must eventually become suboptimal.

First, suppose I3 has at least 2 pieces initially, ps and p5. Let us consider the next two moves
following the ascents. If either is a dead move or worse, the trajectory is suboptimal, so suppose
the next two moves are front or back pushes. Since I3 has at least 2 pieces, the first move must be a
front push. If the front push is not performed by ps or pj, then the next move must also be a front
push, but since the width of the configuration is odd after the first front push, ps or ps could not
have performed the front push. Since I3 contains two pieces still, the next move is not an ascent,
so the sequence of moves is suboptimal.

Otherwise, suppose the first front push was a ladder climb from I3 to the front. Without loss of
generality suppose ps makes the climb. If the second move is a back push from [3, since there is a
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Figure 9: The borders before/after the ones indicated by red in the above diagrams are forced
placements. A x indicates a location a piece cannot be.

serpent configuration consisting of p, p1, p2, p3, a ladder climb is not possible afterwards, and thus
the trajectory is suboptimal.

Instead, suppose the second move is a front push. Since there is a serpent in the front, the only
move which allows for a ladder climb (necessarily by p}) is ps shifting forward. Then, a ladder climb
by p4 must finish by hopping to where ps was prior to shifting, then hopping over ps. This implies
ps and p4 originally had the same measure, so they were distance at least 4 away. Therefore, there
must be at least 2 pieces on Iy which ps and p5 hopped over, py and p), as pictured in figure 10.

/

p3 Ps3

Figure 10: Right: the only possibly optimal trajectory if 2 pieces started on I3, five moves in. Left:
a corresponding possible placement on I, five moves in.

By a parity argument, py and p); cannot hop over p, ps, or ps, as they are on an even-numbered
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border. If the next ladder climb occurs from beyond l4, then pg,p}, and pj all must move first,
which is necessarily a sequence of moves with weight at maximum -2. Otherwise, if the next ladder
climb occurs on ly, the pieces in front of p which can be used in the ladder are p; and p5. However,
a piece needs to move to the border between the ones containing ps and p3, and by parity, this
piece cannot come from l4. Hence, this must be a dead move, and we conclude that if I3 began with
2 or more pieces, then w(A4;) <0.

Otherwise, suppose I3 began with exactly 1 piece on it. We consider subcases based on where
the next ascent in the the trajectory occurs from and the number of pieces on the following borders.
First, suppose the next ascent comes from I, or beyond. If [4 contains more than one piece, then
in order for the trajectory to be optimal, the next two moves must be a back push from [3, then a
front push from I4. However, this is impossible, since a back push from 4 must be a ladder climb,
but by a parity argument of where the frontmost border is, a ladder climb from [, cannot advance
the front border.

Otherwise, suppose the next ascent comes from Iy or beyond and that Iy contains exactly one
piece. The necessary starting configuration is pictured in figure 11. Then for an optimal trajectory,
the next two moves following the two ascents must be a back push from /3 and a front push elsewhere
(by assumption an ascent is not allowed). Assume the same piece does not perform the two moves,
since otherwise, an ascent would be a faster trajectory, which would reduce to the previous lemma.
Note that the front push cannot occur from l4 by parity. Moreover, the back push from I3 must
hop over the sole piece on Iy, because otherwise, after the two moves there would be 2 pieces on I4.

1 D2
Ds
@ O
D3 Da
e O
yul 2

Figure 11: On the left, part of the necessary configuration if [4 contains one piece, prior to the first
two ascents. On the right, the front borders after the first two ascents.

Finally, note that the front push must necessarily come from py if an ascent is possible after-
wards, since it is clear that a front push from p; prevent ascents, and front pushes from any other
piece result in a serpent configuration at the front which prevents an ascent. Hence, after the front
and back push, if an ascent is possible, there must be two pieces on [5: the piece which p, hopped
over in its ascent, and the piece Iy is to hop over first in its ascent (this may be ps). After py
ascends, we now are in the configuration pictured in figure 12.

14



o p2? P47

s
ot

Figure 12: The configuration after py ascends, question marks denote where piece locations are not
forced.

Now, for the trajectory to stay optimal, the next ascent must occur from I[5, since otherwise
it would take two moves to clear l5 and at least one to alter the front borders so that an ascent
is possible. Pieces from [5 may only hop over p and py4 in the front borders, so they must be in
the next ladder. This implies that in the next two moves before the ascent, a piece must move to
the border between p; and p,. However, this must be a dead move or worse, since l5 contains at
least two pieces and thus cannot initiate a back push. Thus, all movesets for which the next ascent
comes from [4 or beyond are suboptimal.

Finally, we consider the case where the next ascent comes from I3, and I3 contains only one
piece. Since an ascent cannot immediately occur, the next two moves if they are to be optimal
must be front pushes. It is quick to see that the only possibilities are either p; pushing twice or
another unlabeled piece coming from an odd-numbered border pushing twice, as pictured in figure
13.

If p3 cannot ascend, the sequence of moves must be suboptimal, so assume p3 can ascend, the
third ascent so far in the moveset. We now consider cases based on which border the fourth ascent
occurs from. If the fourth ascent occurs from I4 or any even numbered border, these pieces cannot
hop over p, pa, or p’(p1) in the left-hand (resp. right-hand) cases.

In the left-hand case from figure 13, before the next ascent, a piece must move to the border
between py and p’, ps must move for p; to be free to be hopped over, and p’ must move so the
frontmost piece can be hopped over. These must necessarily be performed as front or back pushes
for optimality, however if these are performed as front or back pushes, this is at least 3 separate
moves, making the sequence suboptimal.

In the right-hand case from figure 13, pieces must move to the border between p and ps and the
border between ps and p;, and p; must move so the frontmost piece can be hopped over. Again,
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Figure 13: Note that the location of p’ on the left or p; on the right are not uniquely determined.

these must be performed as front or back pushes for optimality, but as front or back pushes, this is
at least 3 separate moves, making the sequence suboptimal.

Finally, suppose the fourth ascent occurs from 5 or beyond. There is necessarily at least one
piece on [y which must front push, and ps must move to open the ladder it climbed. If there are
two pieces on ly4, then there are 3 moves which must occur which is suboptimal, so suppose there
is only one piece on ly, pys, which both p3 and p; hopped over. By similar arguments to earlier, py
cannot hop forward, it must shift to l5. Now, if there are 2 or more pieces on 5, then suboptimality
is forced, as one must move before the ascent, which totals 3 moves before the ascent. However, it
is possible that [5 contains only one piece, p4, as ps as shown in figure 14 could have been the piece
to front push prior to the ascent of ps.

D5 b3
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Figure 14: On the left, the necessary setup if I, and I5 only have one piece, and on the right, in the
lone scenario where [5 front pushed before p3 ascended.
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In this case, then py can ascend and optimality is still preserved. However, there must be two
different pieces on lg, the piece ps hops over when it front pushes, and the piece p3 hops over after
hopping over p, when it ascends. By a similar argument as earlier, the next ascent occurring from
lg forces suboptimality, and it is straightforward to see that at least 3 unique moves must occur
for the next ascent to occur from l7 or beyond. Thus, if after the initial 2 ascents, the next ascent
occurs from I3, and I3 only contained one piece, suboptimality is forced. We have exhausted all
cases, and conclude that w(A4;) < 0.

O

Corollary 6.4.1. If C is a configuration with p > 4, C has speed less than or equal to 2/3.
Proof. Consider any m-move trajectory M of C. If M has no consecutive ascents, then Theorem
3.2 implies M has speed at most 2/3. Otherwise, perform an isolating partition of M = Y7 | A;.
By the two previous lemmas, w(M) = w(>_ A;) = > w(A4;) <0, as desired. O
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