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1 Sets

Before we get into proofs and logic, we first begin with one of the universal building blocks

of mathematics, sets. Many mathematical structures are formed from sets, so having a good

understanding and intuition of them is vital. Note that there is a highly abstract and formal

subject called set theory, first introduced by Cantor, which formalizes many of the axioms

we take for granted in studying mathematics, however what we will study is NOT exactly

set theory. If one wants an introduction to formal set theory, the Stanford Encyclopedia of

Philosophy has a good entry to read up on.

You’ve experienced sets before, whether you are aware or not. Many examples (and non-

examples) will follow.

2

https://plato.stanford.edu/entries/set-theory/
https://plato.stanford.edu/entries/set-theory/


1.1 Basics of Sets

Definition 1.1. A set is a collection of objects. The objects which make up the set are

called its elements, or members.

It is customary to use capital letters to denote (name) sets, and lower-case letters to repre-

sent elements if they are not explicit. If a is an element of the set A, we write: a P A, and

if a is not an element of A, then we write a R A.

Remark 1.2. In general, we will take our sets to not have repeated elements. There is

a class of sets which may have repeated elements, called multisets. We may work with

these later, but for now, sets will be assumed to not have repeated elements unless otherwise

specified.

Two sets are equal if they contain all the same elements. The order in which we list the

elements of the sets does not matter, for example, t1, 2, 3u “ t2, 3, 1u.

Some standard notation for important sets are as follows:

• Z denotes the set of integers.

• N denotes the set of non-negative integers, sometimes called the natural numbers.

• Q denotes the set of rational numbers (numbers that can be expressed as a fraction).

• R denotes the set of real numbers.

• C denotes the set of complex numbers.

Sets can contain any sort of data - numbers, names, people, objects, even other sets!

Example 1.3. (a) The set

A “ t1, blue,Ol Dirty Bastard, ta, b, c, d, euu

contains four elements, the number 1, the color blue, the prolific rapper ODB, and

another set. It may be tempting to think that this set has 9 elements, however this

would be a mistake - the set contained within the set is counted as one element. We

have that c R A, despite the fact that c P ta, b, c, d, eu and ta, b, c, d, eu P A.

(b) A set need not contain any elements! For example the set of all real solutions to the

polynomial equation x2 ` 1 “ 0 is empty. There is only one set that contains zero

elements, it is called the empty set or null set. We denote it by H.

Notational confusion may arise. Here, H is the empty set, while tHu is a set which

contains one element, namely, the empty set. Some students erroneously write H to

denote the number 0, this causes even more confusion. DO NOT DO THIS.
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(c) We sometimes use ellipses, or the three dot notation, to make expressing sets easier.

For example,

B “ t1, 2, 3, . . . , 50u

expresses the integers from 1 to 50, inclusive.

N` “ t1, 2, 3, . . . u

expresses all positive integers.

One must take care when using ellipses, and make it clear in the context exactly what the

set in question is describing. An example: I wrote that above, t1, 2, 3, . . . u denoted the set

of all positive integers. However, this is not the only thing that this notation could express!

It could possibly mean the set of Fibonacci numbers,

F “ t1, 2, 3, 5, 8, 13, . . . u.

Of course, this is a bit of a contrived example - it should be fairly clear in context what set

is being described. Be sure that when you are using ellipses, it is clear beyond any doubt

what set you are describing!

Often, we wish to describe sets of things that satisfy some kind of property. There is a

special notation that allows us to do so succinctly!

Definition 1.4. We may define a set as S “ tx : ppxqu (often written with a | instead of a

:), where by this, we mean that S consists of all the elements x which satisfy the condition

“ppxq.” This is called set-builder notation.

Generally, we assume all elements come from some universal set U , that is, the set for

which all objects are defined to be living in. It is not always obvious what this universal set

is, so it may be specified what U is. For example, the set t1u could have universal set Z, R,

or other possibilities. Here are some examples of set-builder notation where the universal

set is specified.

Example 1.5. (a) We may express the set of all positive integers as:

N` “ tx P Z : x ą 0u.

(b) The set t1, 2, 3u may also be expressed as

t1, 2, 3u “ tx P R : px´ 1qpx´ 2qpx´ 3q “ 0u.

(c) We may express the set of all even integers as:

tx P R : x is an even integeru or t2y : y P R, y is an integeru
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(d) Let’s describe the set:

t7a` 3b : a, b P Zu.

The set contains all numbers of form 7a` 3b where a and b are integers. By properties

of integers, 7a ` 3b must be an integer as well. Which integers could 7a ` 3b be? Let

n be some integer and identify a “ n, b “ ´2n. Then we see:

7n` 3p´2nq “ n,

hence n is in the set. But since n was an arbitrary integer, we conclude that all integers

belong to the set, and hence, the set is simply Z.

Definition 1.6. For a set S, denote by |S| the number of elements contained in S, called

the cardinality of S. A set is finite if it has finite cardinality, and infinite otherwise.

Example 1.7. N,Z,R,C are all infinite. The set A from before has |A| “ 4, and the set B

from before has cardinality |B| “ 50, hence A and B are finite.

Exercise 1.8. Which of the following sets contains ´2 as an element?

• S1 “ t´1,´2, t´1u, t´2u, t´1,´2uu

• S2 “ tx P N : ´x P Nu

• S3 “ tx P Z : x2 “ 2xu

• S4 “ tx P Z : |x| “ ´xu

• S5 “ tt´1,´2u, t´2,´3u, t´1,´3uu

1.2 Subsets

Definition 1.9. A set A is a subset of a set B if every element of A also belongs to B. It

is true that A Ď A. A set A is a proper subset of a set B if every element of A belongs to

B, but A ‰ B. We denote this A Ă B, or sometimes A Ĺ B.

Remark 1.10. Observe that if A Ď B and B Ď C, then A Ď C. Why? If x P A, then

x P B. But if x P B, then x P C. Thus, if x P A, then x P C.

Every nonempty set has at least two subsets, namely itself and H. H is the only set which

has only one subset.

Example 1.11. (a) N Ă Z Ă Q Ă R Ă C.

(b) It is possibly for one set to be both a subset and an element of another set. For

example, A “ t1u and B “ t1, t1uu.
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(c) For a, b P R satisfying a ă b, we have the following subsets of R:

pa, bq “ tx P R : a ă x ă bu Ă R, ra, bs “ tx P R : a ď x ď bu Ă R.

pa, bq is an open interval of R, while ra, bs is a closed interval of R. We may also

replace R with Q, Z, N, or any ordered set. We can also form sets like ra, bq or pa, bs

- these are called half-open or half-closed intervals. Finally, we have the infinite

intervals:

p´8, aq “ tx P R : x ă au, pa,8q “ tx P R : x ą au,

and similarly for closed brackets. Note that pa,8s is not defined as a subset of R,

however there are other number systems where this is well defined!

Theorem 1.12. Two sets A and B are equal if and only if A Ď B and B Ď A.

We have not discussed logically what “if and only if” means, so to be clear, this statement

is saying two things:

• If A and B are equal, A Ď B and B Ď A.

• If A Ď B and B Ď A, then A “ B.

We have not formally introduced proofs yet, but let’s prove this statement rigorously.

Proof. First, we show the forward statement. Suppose A “ B. Then for any x P A, by

equality, we have x P B, hence A Ď B. Similarly, for any y P B, by equality, we have y P A,

hence B Ď A. Thus, if A and B are equal, A Ď B and B Ď A.

Next, we show the backwards statement. Suppose x P A. Since A Ď B, x P B as well. Now

suppose y P B, since B Ď A, y P A as well. Thus, the elements in A and B must be equal,

hence A “ B, as desired.

Remark 1.13. How many subsets are there of a set A? Well, it’s fairly clear that if A

is infinite, there are still infinitely many subsets. But if A is finite? To count this, we

can consider the following procedure for building a subset of A: choose an ordering of the

elements of A. Consider the first element of A and decide whether to add it or not. Then

consider the second element, and decide whether to add it. Repeat through all the elements.

This obtains a unique subset, and moreover, all subsets of A can be chosen in this way. Since

in total we made |A| choices, each of which had 2 options, we had 2 ¨ 2 ¨ ¨ ¨ ¨ ¨ 2 “ 2|A| unique

possible outcomes. We will formally prove this using combinatorics later - the proof uses

this basic idea. Note that it is crucial that A contains no repeating elements.

Definition 1.14. Denote by PpAq the power set of A, which contains all subsets of A.

Theorem 1.15. If A is finite, |PpAq| “ 2|A|.
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1.3 Set Operations

Note: Be sure to draw Venn diagrams for this section!

Just like we have ways of combining two numbers to produce a new number (addition,

multiplication), we have ways of combining sets to produce a new set. These are called

binary operations - binary because they take in two things, and spit out one.

Definition 1.16. • The union of two sets A,B is:

AYB “ tx : x P A or x P Bu.

• The intersection of two sets A,B is:

AXB “ tx : x P A and x P Bu.

• The difference of two sets A,B is:

A´B “ tx : x P A and x R Bu.

• The compliment of a set A is:

A “ tx : x R Au.

Note that for the compliment may be equivalently expressed as:

A “ U ´ A

Remark 1.17. Here, it is clear that A X B “ B X A and A Y B “ B Y A - the operations

are commutative. In addition, pAXBqXC “ AXpBXCq, in other words, the operations

are associative so we can simply write AXB X C and it is clear what this means.

However, it is not true in general that A´B “ B ´A, or that pA´Bq ´C “ A´ pB ´Cq!

Example 1.18. Let A “ tx P R : |x| ď 3u, B “ tx P R : |x| ą 2u, C “ tx :P R : |x´ 1| ď 4u.

(a) In interval notation, A “ r´3, 3s, B “ p´8,´2q Y p2,8q, and C “ r´3, 5s.

(b) A X B “ r´3,´2q X p2, 3s, A ´ B “ r´2, 2s, B X C “ r´3,´2q X p2, 5s, B Y C “ R,
B ´ C “ p´8,´3q Y p5,8q, and C ´ B “ r´2, 2s. Note that as we would expect,

B ´ C ‰ C ´B

Note that we may express the difference of two sets in another way!

Theorem 1.19. For any two sets A,B, we have A´B “ AXB.

Proof. Exercise.

We have an distributive property of sets analogous to the distribution of addition and mul-

tiplication.

Theorem 1.20. For all sets A,B,C,

AX pB Y Cq “ pAXBq Y pAX Cq, AY pB X Cq “ pAYBq X pAY Cq
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1.4 Indexed Collections of Sets

You may recall sum notation, such as
ř1
i“1 0i, is used to denote large sums. Since unions

and intersections are commutative and associative, we have similar notions.

Definition 1.21. Given an ordered list of sets, A1, . . . , An (where n is a positive integer),

we write:
n
ď

i“k

Ai “ tx : x P Ai for some i, k ď i ď nu

n
č

i“k

Ai “ tx : x P Ai for all i, k ď i ď nu

The variable i is called a dummy variable.

Example 1.22. Let B1 “ t1, 2u, B2 “ t2, 3u, and so on (so in general, Bk “ tk, k ` 1u, for

any k P N). Given some non-negative integers j ď k:

k
ď

i“j

Bi “ tj, j ` 1, . . . , k ` 1u.

Computing the intersection is a bit trickier, if k ´ j ě 2,

k
č

i“j

Bi “ H.

However, if k ´ j “ 1, then
Şk
i“j Bi “ tj ` 1u and if k “ j, then

Şk
i“j Bi “ Bj “ tj, j ` 1u.

Remark 1.23. In the case of infinite ordered lists, we also allow notation such as

8
ď

i“´8

Ai “ tx : x P Ai for some i P Nu

8
č

i“´8

Ai “ tx : x P Ai for all i P Nu

Example 1.24. For any n P N`, let Sn “ p´1{n, 1{nq. It is clear that S1 Ą S2 Ą . . . , so we

have
8
ď

i“1

Si “ S1.

What is their intersection? Well, first note that 0 P Sk for any k. Then, observe that for any

nonzero x P R, there exists some positive integer k for which |x| ą 1{k. Therefore, x R Sk,

and thus,
8
č

i“1

Si “ t0u

This is a classic example of the claim that “the intersection of closed intervals need not be

closed!”
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Definition 1.25. However, there are instances when the union or intersection of a collection

of sets cannot be described conveniently, or perhaps at all, in the manners described above.

In this case, we introduce a nonempty set I, which we call the index set, which is used as

a mechanism for selecting the sets we wish to consider. Then, for every α P I, we assign a

corresponding set, Sα, and write tSαuαPI to denote the collection of sets indexed this way,

called an indexed collection of sets. Then, we can express their union and intersection

as follows:

ď

αPI

Sα “ tx : x P Sα for some α P Iu

č

αPI

Sα “ tx : x P Sα for all α P Iu

Example 1.26. (a) Going back to the previous example with Bk “ tk, k ` 1u, we could

define I “ tj, j` 1, . . . , k´ 1, ku, and then rewrite the union and intersection notation

as follows:
k
ď

i“j

Bi “
ď

αPI

Bα

k
č

i“j

Bi “
č

αPI

Bα

(b) A situation where we need to use the index notation is as follows: for all x P R, let

Sx “ txu. Then, let I “ R, so we have

ď

αPI

Sα “ R.

In this case, it would have been impossible to express this collection of sets in the

more standard notation - this is due to the uncountability of the reals, proven

by Cantor. However, had we used Q rather than R, it is in fact possible to index the

rationals with the natural numbers! We may prove both these statements later in class,

if we do not, take Real Analysis to see this proof.

1.5 Cartesian Products and Partitions

We next cover a few more features of sets which will be of importance later in the course.

Definition 1.27. Two sets are disjoint if their intersection is the trivial set. A collection

of sets is pairwise disjoint if every choice of two sets in the collection are disjoint.

Example 1.28. Let A “ t1, 2u, B “ t3, 4u, C “ t5, 6u. Then A,B,C are pairwise disjoint.

Let A1 “ t1, 2u, B1 “ t3, 4u, C 1 “ t4, 5u. Then A1 X B1 X C 1 “ H, and A1 is disjoint with B1

and C 1, but A1, B1, C 1 are not pairwise disjoint since B1 X C 1 ‰ H.
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Definition 1.29. For a set A, a collection S of pairwise disjoint subsets of A is a partition

of A if every element of A belongs to some set in S.

Alternatively, a partition of A can be defined as a collection S of subsets of A satisfying:

(a) X ‰ H for every set X P S.

(b) For every two distinct sets X, Y P S, X X Y “ H.

(c)
Ť

XPS S “ A.

Example 1.30. (a) Z may be partitioned into the set of even integers and the set of odd

integers.

(b) For any finite set A, PpAq can be partitioned into tP0pAq,P1pAq, . . . ,P |A|pAqu, where

P ipAq is defined to be the set of all subsets of A containing exactly i elements. This

partition will be used later in the course!

(c) For two sets A,B, their union A Y B has a partition (after removing empty sets as

necessary) S “ tA´B,AXB,B ´ Au (draw a venn diagram).

Next, we take a look at another method of forming sets, the Cartesian product.

Definition 1.31. An ordered pair is an object consisting of, pair of objects, written pa, bq.

The contents of an ordered pair are called its coordinates. Two ordered pairs pa, bq and

pa1, b1q are equal if and only if a “ a1 and b “ b1, that is, their first and second coordinates

match. For example, p1, 2q ‰ p2, 1q.

The Cartesian product (sometimes just called the product) AˆB of two sets A,B is the

set of ordered pairs whose first coordinate belongs to A and second coordinate belongs to B.

Explicitly,

AˆB “ tpa, bq : a P A and b P Bu.

Remark 1.32. As the name suggests, order matters in an ordered pair. If a ‰ b, then

pa, bq ‰ pb, aq. Similarly, if A ‰ B as sets, then AˆB ‰ B ˆ A.

If A and B are finite, then |A ˆ B| “ |A| ¨ |B| - we may see why this is by considering the

number of possible ways to form an ordered pair. There are |A| possible choices from A and

|B| possible choices from B - each way we can choose will be unique, and every ordered pair

can be chosen in this fashion.

Example 1.33. (a) A classic example of a Cartesian product is the xy-plane, or two-

dimensional Euclidean space, which can simply be expressed as RˆR, or R2. Similarly,

any graph of a function y “ fpxq can be expressed as the set of points tpx, yq P R2 :

y “ fpxqu.

(b) If A “ t1, 2u and B “ t1, 3u, then A ˆ B “ tp1, 1q, p1, 3q, p2, 1q, p2, 3qu and B ˆ A “

tp1, 1q, p1, 2q, p3, 1q, p3, 2qu. These are not equal.
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We can extend this notion further beyond just pairs, and form Cartesian products of more

than just two sets.

Definition 1.34. An ordered tuple is an ordered list, px1, x2, . . . q which may be finite or

infinite. Two ordered tuples are equal if and only if they have equal size and each coordinate

is equal.

The Cartesian product of sets A1, . . . , Ak is:

A1 ˆ ¨ ¨ ¨ ˆ Ak “ tpx1, . . . , xkq : x1 P A1, . . . , xk P Aku.

Take caution - the set AˆpBˆCq and the set AˆBˆC are not quite identical - the former

consists of ordered pairs, and the latter consists of ordered triples. However, the sets “look

the same” (are bijective) and we can identify pa, pb, cqq with pa, b, cq without much issue - we

will expand on this further in the course.

Example 1.35. (a) 3-dimensional Euclidean space, or xyz-plane, is RˆRˆR “ R3. As

before, we can express the graph of a function z “ fpx, yq as the set tpx, y, zq P R3 :

z “ fpx, yqu.

(b) If we flip a coin once, there are two possible outcomes, either a heads or tails. We can

express this as a set S “ tH,T u. Suppose we want to count the number of outcomes

of flipping a coin some number of times, where the order of flips matters. For example,

with 2 flips, there are four possible outcomes: tpH,Hq, pH,T q, pT,Hq, pT, T qu. This is

exactly the set S2! In general, Sn details the set of all possible outcomes when we flip

a coin n times. We see that |Sn| “ 2n. Constructions like these are very useful in the

study of probability.

1.6 Are All Collections Sets? Russell’s Paradox

One may notice that I have occasionally refrained from calling some things “sets,” and in-

stead used terminology like “collections” or “lists.” This is intentional - we may ask the

question, “is every collection of objects a set?” This should be tautologically true by the

definition given at the beginning of this chapter, however, we shall see that some issues may

arise.

The philosopher and mathematician Bertrand Russell (1872 - 1970) researched groundbreak-

ing work on the theory of sets and foundations of mathematics. He spent much of his life

attempting to reduce mathematics to classical logic (what we will study in the next chapter),

and his book Principia Mathematica, published with Alfred Whitehead, is considered one

of the great classical logic publications. He is additionally famous for discovering Russell’s

Paradox (1902). At the time, significant work was being put into building an axiomatic

and purely logical approach to mathematics, and this paradox proved troublesome, as it
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demonstrated an inconsistency in some of the axiomatic approaches mathematicians (in-

cluding Russell himself) had taken. Russell’s paradox may be one of the largest logical

breakthroughs, along with Godel’s Incompleteness Theorems (which are often abused in pop

culture and taken to be more powerful statements than they actually are - please do not

make statements about the incompleteness theorems until you have the understanding to be

able to do so).

For more historical reading, the graphic novel Logicomix is quite informative, while still re-

maining light reading! See also Stanford’s Encyclopedia of Philosophy.

Consider the following set of sets:

A “ tX : X is a set and X R Xu.

In other words, A is the set of all sets which do not include themselves. Most sets we can

think of are in A - for example, any set which contains only numbers cannot contain itself,

and therefore belongs to A.

A set not in A is as follows: let B “ ttt¨ ¨ ¨ uuu - we may think of this as a set of infinite,

identical Russian dolls nested inside each other endlessly. However, there is a simpler way

of expressing this set: B “ tBu. Clearly, B P B, hence B R A.

Russell’s Paradox asks the question:

Is A an element of A?

If A P A, then by definition of A, A R A, which is a logical contradiction. Therefore, A R A,

but then by definition of A, this implies that A P A, again, a logical contradiction! More

formally, if A P A is true, then it is false, and if A P A is false, then it is true.

The ultimate conclusion here is that our approach to the definition of a set, which is known

as naive set theory, is logically inconsistent - not every collection of objects can be a set.

Eventually, mathematicians settled upon a collection of axioms for set theory, which are the

Zermelo-Fraenkel axioms, which define properties sets may have, as well as rules for what

may constitute a set. One such axiom, the axiom of foundation, states that no non-empty

set X is allowed to have the property X X x ‰ H for all its elements x. This rules out our

“set” B “ tBu.

In practice, one need not worry about modern set theory and the ZF axioms - almost any

set which we care about is a logically consistent set, and paradoxes like Russell’s do not

tend to come up in everyday mathematics, even in modern research mathematics. However,

Russell’s paradox is an important lesson - precision of thought and language is an important

part of doing mathematics. We will shift to logic next, a codification of this.
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2 Logic

The goal of mathematics is not multiplying large numbers together, it is to determine ab-

solute truth. Are there connections between two mathematical objects? What are they?

Finding answers to questions like these is important, but more important is demonstrating

that we are right and that our explanation is logically convincing to others. The reasoning

we use as we proceed from what we already know as truth to what we wish to show is truth

must follow the laws of logic, and in this way, it will make sense to others, not only to

ourselves.

There is a joint responsibility:

• It is the writer’s responsibility to use laws of logic to give a valid and clear argument,

with enough details provided for the reader to understand what we have written and

to be convinced.

• It is the reader’s responsibility to know the laws of logic and to study the concepts

involved sufficiently well, so they will not only be able to understand a well-presented

argument but can decide as well if it is valid or not.

Logic itself is a very deep academic field, however we will only go through what is necessary

to know in order to do mathematics.

2.1 Statements

In mathematics, we constantly deal with statements, specifically, statements that deal with

mathematics,

Definition 2.1. A statement is a declarative sentence or assertion that is either true or

false, but not both. The truth-ness or false-ness of a statement is its truth value - a

statement can be true (denoted T) or false (denoted F).

We often use P,Q,R, or P1, P2, . . . to denote statements.

Example 2.2. The sentences “The integer 3 is odd” and “The integer 57 is prime” are both

statements, the first is true and the second is false. The statement “The sky is currently

dark” is a statement, but the truth value may change depending on the time of day. The

statement “The 100th digit in the decimal expansion of π is 7” is a statement, but it may

take some work to verify the truth value of this statement. A statement need not have a

truth value which is immediately known.

The imperative sentence “Find the derivative of ex,” the interrogative sentence “Are these

sets disjoint?” and the exclamation “How difficult this problem is!” are all not statements.

Definition 2.3. “The real number r is rational” is a statement, but unless we know what

r is, we cannot assign a truth value to it. This statement is an open sentence, or a state-

ment with one or more variables representing a value in a prescribed set, the domain of the

13



variable. Note that if no data is given on the variable, an open sentence is not necessarily a

statement. We denote open sentences with their variables listed, like P pxq for example.

If P pxq is an open sentence and the domain of x is S, we say P pxq is an open sentence

over the domain S.

Example 2.4. (a) The open sentence P pxq : 3x “ 12 has truth value T when x “ 4,

and has truth value F when x ‰ 4. P pxq is not a statement, however, if nothing is

substituted for x.

(b) For the open sentence

Qpx, yq : |x` 1| ` |y| “ 1

in two variables, suppose the domain of the variable x is S “ t´2,´1, 0, 1u and the

domain of the variable T “ t´1, 0, 1u. Then we check:

P p´1, 1q : |p´1q ` 1| ` |1| “ 1

is a true statement, while

P p1,´1q : |1` 1| ` | ´ 1| “ 1

is a false statement. In fact, P px, yq is a true statement when

px, yq P tp´2, 0q, p´1,´1q, p´1, 1q, p0, 0qu,

and P px, yq is a false statement for all other px, yq P S ˆ T .

Definition 2.5. The possible truth values of a statement, or possible combinations of truth

values for a list of statements, can be listed together in a table, called a truth table.

Example 2.6. Here are the truth tables for two independent statements, P,Q:

P

T

F

Q

T

F

P Q

T T

F T

T F

F F

Truth tables will become more useful when we begin to look at statements which have

dependent relationships.
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2.2 The Negation, Disjunction, and Conjunction

Like with numbers and sets, we look to construct new statements from old ones in a variety of

ways. The first example concerns producing a new statement from a single given statement.

Definition 2.7. The negation of a statement P is the statement “not P ,” denoted by „ P .

In English, it is always possible to express the negation as “It is not the case that P ,” but

this is usually not succinct.

Example 2.8. The negation of the statement

P1 : “The integer 3 is odd”

is the statement

„ P1 : “The integer 3 is not odd”.

We could also write “The integer 3 is even.”

The negation of the statement

P2 : “The integer 57 is prime”

is the statement

„ P2 : “The integer 57 is not prime”

Remark 2.9. The negation of a true statement is always false, and the negation of a false

statement is always true. Therefore, for a statement P , P and „ P have the truth table as

follows:

P „ P

T F

F T

Next we introduce two binary operators on statements, stemming from “or” and “and”.

Definition 2.10. The disjunction of the statements P,Q is the statement

P or Q

and is denoted P _ Q. The disjunction is true if at least one of P and Q is true, and false

otherwise.

The conjunction of P,Q is the statement

P and Q

and is denoted P ^Q. The conjunction is true only when both P and Q are true.

For shorthand, we may also call the disjunction the “or” and the conjunction the “and.”
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Example 2.11. For the statements P1 : “The integer 3 is odd” and P2 : “The integer 57 is

prime” from earlier, the disjunction P1 _ P2 is:

P1 _ P2 : Either 3 is odd or 57 is prime,

and the conjunction P1 ^ P2 is:

P1 ^ P2 : Both 3 is odd and 57 is prime.

Here, P1 _ P2 is true and P1 ^ P2 is false.

Remark 2.12. The truth tables for disjunction and conjunction are as follows:

P1 P2 P1 _ P2 P1 ^ P2

T T T T

F T T F

T F T F

F F F F

The wording for disjunction can be a bit confusing - the “or” may sound like it suggests

that both P1 and P2 shouldn’t both be true. This is not the meaning we assign, but there is

a separate statement, exclusive or, written “XOR,” which fills this role instead. That is,

P1 XOR P2 is true if only one of P1, P2 is true.

2.3 Logical Connectives & Logical Equivalences

Definition 2.13. The symbols which input and output statements, like „,_,^, and more

which we have yet to introduce, are referred to as logical connectives. As we’ve seen, we

can use these logical connectives to form more intricate statements, like pP _Qq ^ pP _Rq

(note the use of parentheses). These are compound statements, statements composed of

one or more given statements and logical connectives. The shortest compound statement is

„ P .

Example 2.14. Some compound statements are: P _ Q, p„ P q ^ Q,P ^ pQ _ Rq, P ^ p„

P q, P _ p„ P q,„ pP _ Qq,„ p„ P q. Note that some of these compound statements have

fixed truth value regardless of the values of P,Q,R. For example, P ^p„ P q is always false,

and P _ p„ P q is always true.

Definition 2.15. A compound statement P which is true regardless of the truth values

which comprise P is called a tautology. Similarly, a compound statement S which is false

regardless of the truth values which comprise S is called a contradiction.

Example 2.16. Here are the truth tables of the tautology P _p„ P q and the contradiction

P ^ p„ P q:
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P „ P P _ p„ P q P ^ p„ P q

T F T F

F T T F

Each row is the same value for the tautology and contradiction.

Remark 2.17. It is possible to have two compound statements whose truth table columns

are identical, in other words, the two compound statements have exactly the same truth

value for ever combination of statement truth values. Some simple examples are: P and

„ p„ P q, or P _Q and Q_ P :

P „ P „ p„ P q

T F T

F T F

P Q P _Q Q_ P

T T T T

T F T T

F T T T

F F F F

Definition 2.18. Let R and S be two compound statements involving the same component

statements. Then R and S are called logically equivalent if R and S have the same truth

values for all combinations of truth values of their component statements. We denote this

by R ” S.

Logical equivalence can be quite practical. For instance, if R ” S, and we wish to show that

S is true, we may do so by showing R is true instead, which will imply that S is true! There

are many times in mathematics when we want to show some statement is true, and can do

so by proving another statement which is logically equivalent. We will revisit this idea after

introducing a few more logical connectives, and use it often when proving things.

Some useful logical equivalences are as follows (note the similarity to the set equivalences):

Theorem 2.19. For any statements P,Q,R:

(a) Commutative laws:

(a) P _Q ” Q_ P

(b) P ^Q ” Q_ P

(b) Associative laws:

(a) P _ pQ_Rq ” pP _Qq _R

(b) P ^ pQ^Rq ” pP ^Qq ^R

(c) Distributive laws:
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(a) P _ pQ^Rq ” pP _Qqp^pP _Rq

(b) P ^ pQ_Rq ” pP ^Qq _ pP ^Rq

(d) De Morgan’s Laws:

(a) „ pP _Qq ” p„ P q ^ p„ Qq

(b) „ pP ^Qq ” p„ P q _ p„ Qq

Proof. All of these may be proven by means of a truth table. Some of these are left as

exercises for you!

2.4 The Implication ñ

Perhaps the most used statement and connective in mathematics is the implication.

Definition 2.20. For statements P and Q, the implication (sometimes called the condi-

tional) is the statement

“If P , then Q,” or P implies Q.

We denote it by P ñ Q. Its truth table is:

P Q P ñ Q

T T T

T F F

F T T

F F T

Note that P ñ Q is false only when P is true but Q is false.

Example 2.21. As before, let P1 : 3 is odd, and P2 : 57 is prime. Then P1 ñ P2 reads as,

“If 3 is odd, then 57 is prime.” As P1 is true, but P2 is false, then P1 ñ P2 is false.

P2 ñ P1 reads as, “IF 57 is prime, then 3 is odd.” In this case, P2 ñ P1 is true, despite P1

being false.

Remark 2.22. While the other logical connectives may seem intuitive, the implication af-

fords an explanation. The basic idea is that when P is false, we cannot make any statements

about Q, so the implication is vacuously true. Let’s see why its truth table is as we’ve defined

it with the following example:

Say you’re taking a course and are currently receiving a B+. You go to your prof and ask if

there’s any way you can get an A in the course, and they respond: “If you earn an A on the

final, you’ll receive an A in the course.” We check the truth or falseness of this implication
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based on the various combinations of truth or falseness. We have: P : “You earn an A on

the final exam,” and Q : “You receive an A for your final grade,” let’s check P ñ Q based

on whether your professor told the truth or not.

• If P and Q are both true, then your professor told the truth. You got an A on the

final so you got an A in the class, hence P ñ Q is true as well.

• If P is true but Q is false, then your professor lied - you got an A on the final, but still

did not get an A in the class as promised. So P ñ Q is false.

• If P is false and Q is false, then your professor told the truth, as you were only promised

an A if you got an A on the final. Hence P ñ Q is true.

• Suppose P is false but Q is true, that is, you did not get an A on the exam but still

got an A in the class. How could this happen? It’s possible the exam was curved,

it’s possible there was a clerical error, or it’s possible the professor just likes you.

Regardless, the professor didn’t lie, as they didn’t guarantee anything if you didn’t get

an A. Hence P ñ Q is true.

So to sum up, the only situation for when P ñ Q is a false statement is when P is true, but

Q is false.

Remark 2.23. There are a number of ways to write P ñ Q, such as:

• If P then Q

• Q if P

• P implies Q

• P only when Q

• P is sufficient for Q

• Q is necessary for P

Generally, we are more interested in open sentences which contain variables than simply

statements, and whose truthfulness is only known once we’ve assigned values to the vari-

ables. Just as we’ve formed new statements with logical connectives, we can form new open

sentences in the same way.

Example 2.24. (a) Let x P R, P pxq be the sentence “x is positive,” and Qpxq be the

sentence “x is not positive.” Now, consider the open sentence which we should certainly

hope is valid for any x:

If x is positive, then ´x is not positive.
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This can be expressed by:

P pxq ñ Qp´xq.

• If x is positive, then P pxq is true and Qpxq is true, so the implication is true.

• If x is negative, then P pxq is false and Qpxq is false, so the implication is true.

• If x is zero, then P pxq is false but Qpxq is true, so the implication is true.

Thus for all possible values of x P R, P pxq ñ Qpxq is true.

(b) For a triangle T , let P pT q : T is equilateral, and QpT q : T is isosceles. Consider the

implication P pT q ñ QpT q, where the domain of T is all triangles.

• For an equilateral triangle T1, both P pT1q and QpT1q are true, so P pT1q ñ QpT1q

is true.

• For an isosceles triangle T2, P pT2q is false but QpT2q is true, so P pT1q ñ QpT1q is

true.

• For a scalene triangle T3, P pT3q and QpT3q are false, so P pT3q ñ QpT3q is true.

Thus for all triangles T , P pT q ñ QpT q is true.

(c) Let S “ t2, 3, 5u, and define

P pnq : n2
´ n` 1 is prime., , Qpnq : n3

´ n` 1 is prime,

be open sentences over domain S. Plugging in values of n, we have:

P p2q : 3 is prime, Qp2q : 7 is prime.

P p3q : 7 is prime, Qp3q : 25 is prime.

P p5q : 21 is prime, Qp5q : 121 is prime.

Here, P p2q ñ Qp2q and P p5q ñ Qp5q are true, but P p3q ñ Qp3q is false.

Theorem 2.25. There is a logical equivalence P ñ Q ” p„ P q _ Q, as demonstrated by

the following truth table:

P Q P ñ Q „ P p„ P q _Q

T T T F T

T F F F F

F T T T T

F F T T T

Therefore, there is also a logical equivalence „ pP ñ Qq ” P ^ p„ Qq.

Theorem 2.26. There is a logical equivalence P ñ Q ” p„ Qq ñ p„ P q - the latter

statement is called the contrapositive.
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2.5 The Biconditional

Definition 2.27. For statements or open sentences P,Q, the implication Q ñ P is called

the converse of P ñ Q. Note that if P ñ Q, it is not necessarily true that Q ñ P . For

example, the true statement “If 57 is prime, then 3 is odd” has false converse “If 3 is odd,

then 57 is prime.”

For statements or open sentences P and Q, the conjunction

pP ñ Qq ^ pQñ P q

is called the biconditional, denoted P ô Q. We say this as “P is equivalent to Q” or

“P if and only if Q”. It has truth table:

P Q P ñ Q Qñ P P ô Q

T T T T T

T F F T F

F T T F F

F F T T T

It follows that P ô Q is true only when P and Q have the same truth values.

Example 2.28. (a) The biconditional “3 is an odd integer if and only if 57 is prime” is

false, but the biconditional “100 is even if and only if 101 is prime” is true. Furthermore,

“5 is even if and only if 4 is odd” is also true.

(b) Consider the open sentences P1pxq : x “ 3 and P2pxq : |x| “ 3 over the domain R. The

implication

P1pxq ñ P2pxq : If x “ ´3, then |x| “ 3,

is true for all x P R. However, the converse:

P2pxq ñ P1pxq : If |x| “ 3, then x “ ´3

is false when x “ 3, since P2p3q is true and P1p3q is false. Hence, the biconditional

P1pxq ô P2pxq : x “ ´3 if and only if |x| “ 3

is false when x “ 3 and true for all other numbers x.

Negating the biconditional is rather lengthy but follows by definitions and DeMorgan’s laws.

Theorem 2.29. „ pP ô Qq ” pP ^ p„ Qqq _ pQ^ p„ P qq

Returning to logical equivalences, one may note that if R and S are two compound statements

which are logically equivalent, then Rô S is a tautology, that is, it’s always true.
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2.6 Quantified Statements

We can convert open sentences into statements in ways other than substituting values for

variables via quantification.

Definition 2.30. Let P pxq be an open sentence over a domain S. Adding the phrase “For

all x P S” to P pxq produces a statement called a quantified statement. The phrase “for

all” is referred to as the universal quantifier and is denoted by the symbol @, and is writ

in shorthand by

@x P S, P pxq

and is written in words with

For all x P S, P pxq.

The quantified statement is false if P pxq is false for at least one element x P S.

Example 2.31. If P pxq is the sentence “x is positive” and S “ N, adding “for all” gives

“For all x P N, x is positive,” which is false, since 0 is not positive. If we change S “ N`,

the quantified statement is true.

Definition 2.32. Another quantified statement can be created by adding the phrase “there

exists”, called the existential quantifier, to a open sentence P pxq, denoted D. In short-

hand, this is written

Dx P S, P pxq

and is written in words with

There exists x P S such that P pxq.

This is true if P pxq is true for one or more x P S.

Example 2.33. If P pxq is the sentence “x is a solution to x2 ` 1 “ 0” and S “ R, then

adding “there exists” produces “There exists an x P R such that x2 ` 1 “ 0” which is false.

If we change S “ C, then the produced quantified statement is true.

Theorem 2.34. Negation of the quantified statements produces the following equivalences:

• „ p@x P S, P pxqq ” Dx P S, p„ P pxqq

• „ pDx P S, P pxqq ” @x P S, p„ P pxqq

We think of this as follows, if @x P S, P pxq is false, then there must exist some x such that

P pxq is false, a counterexample to the claim. Similarly, if Dx P S, P pxq is false, then we can’t

find any x making P psq true, hence, it must be true that for all x P S, P pxq is false.
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Example 2.35. (a) Let A “ t1, 2, 3u and PpAq “ S. Then the quantified statement

For all sets B P PpAq, A´B ‰ H

is false since the subset B “ A satisfies A´B “ H. We negate this as follows:

There exists B P PpAq such that A´B “ 0,

and this is true, again since B “ A demonstrates this. We can think of negating a “for

all” negation as “finding a counterexample.”

(b) Consider the statement

There exists a real number x such that x2 “ ´1

which is false. The negation is

For every real number x, x2 ‰ ´1

which is true, as every real number has non-negative square. We can think of an

“exists” negation as “proving the opposite.”

Remark 2.36. More generally, open sentences can be turned into quantified statements by

adding quantifiers to each variable - be careful that order matters. Moreover, equivalence

of negations can be found by negating the sentence and “switching the quantifier” for each

quantifier present and keeping the order of variables and quantifiers. We illustrate with an

example:

Example 2.37. (a) Consider the open sentence

Qpx, yq : x` y is prime

where x has domain S “ t3, 5, 7u and y has domain T “ t2, 6, 8, 12u. The quantified

statement

Dx P S, @y P T,Qpx, yq

expressed in words is

There exists some x P S such that for every y P T , x` y is prime.

For x “ 5 this is true - 5+12, 5+6, 5+8, 5+12 are prime. We negation is as follows:

notice that @y P T,Qpx, yq is itself a sentence, and Dp P S is a quantifier. Therefore,

we compute the negation in parts:

„ pDx P S, @y P T,Qpx, yqq ” @x P S,„ p@y P T,Qpx, yqq ” @x P S, Dy P T, p„ Qpx, yqq

In words, this is

For all x P S, there exists a y P T such that x` y is not prime.
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(b) Consider the open sentence

P px, yq : xy is odd,

where x, y P N. Then the quantified statement

@x P N, Dy P N,Qpx, yq

expressed in words is

For all positive integers x, there exists a positive integer y such that xy is odd.

This statement turns out to be false, if x “ 0 then no integer y satisfies 0y is odd. The

negation of this statement is

Dx P N, @y P N, p„ Qpx, yqq

which is words is

There exists a positive integer x such that for all positive integers y, xy is not odd.

Definition 2.38. A modification we can make to the existential quantifier is as follows, we

add “There exists a unique” and denote this D!. This is the uniqueness quantifier,

and for a statement D!x P S : P pxq, it is true only when there is exactly one x P S such that

P pxq is true.

Example 2.39. The statement “there exists a unique x P Z such that x2 “ 9” is false, as

there exist two values x such that x2 “ 9, 3 and ´3. The statement “there exists a unique

x P Z such that x2 “ 8 is also false, since there do not exist any x P Z such that x2 “ 8.

However, the statement “there exists a unique x P Z such that x2 “ 0” is true, since only

x “ 0 satisfies x2 “ 0.

2.7 Characterization of Statements

Recall the biconditional “if and only if”, sometimes written by mathematicians as “iff.”

Recall that if we see P iffQ, we mean “P ñ Q and Qñ P .”

Definition 2.40. Suppose some concept or object if expressed in an open sentence P pxq

over a domain S, and Qpxq is another open sentence over S. We say P pxq is characterized

by Qpxq if

@x P S, P pxq ô Qpxq

is a true statement.

In some sense, we can think of a characterization of some concept as an “alternative defini-

tion” of that concept, in that the alternate definition gives a concept which has exactly the

same properties as before.
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Example 2.41. (a) The irrational numbers are defined to be the real numbers which are

not rational, that is, I :“ R´Q. One characterization of any irrational number is that

it has a nonrepeating decimal expansion, so we have a characterization,

A real number r is irrational if and only if r has a nonrepeating decimal expansion.

(b) Recall that equilateral triangles are defined as triangles whose sides are all equal.

However, recall that equilateral triangles have equal angles, and conversely, any triangle

which has equal angles is equilateral. Therefore we have a characterization:

“A triangle T is equilateral if and only if T has three equal angles.”
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3 First Proof Methods: Direct, Contrapositive, Case-

work

We’ve finally reached the main topic of this course - mathematical proofs. Initially, we are

concerned with one question - given some mathematical statement, how can we show that it

is true? Generally, these statements will be in the form of implications or biconditionals, e.g.

“x is even if and only if 2|x,” or “if fpxq is a continuous function on a compact domain, then

fpxq has a global maximum.” Note that these are open sentences, but can be considered

statements by adding the universal modifier in front implicitly. This will be elaborated on

later.

Definition 3.1. A mathematical statement whose truth is accepted without proof is referred

to as an axiom. For example, an axiom of Euclidean geometry is that for every line l and

point P not on l, there is a unique line containing P which is parallel to l. Axioms are the

logical foundations of mathematics.

A true mathematical statement whose truth can be verified is often referred to as a theo-

rem, though usually the word theorem is reserved for particularly interesting, important, or

nontrivial statements. For example “2+3=5” is not a theorem. We sometimes use the words

“proposition” or “result” to characterize more basic results. A logically sound argument

that a statement is true is a proof.

A corollary is a true statement whose truth can be deduced directly from some earlier the-

orem or result. A lemma is a result which is proven in order to prove some greater result,

sort of like a “helping result.” However, some lemmas historically have gained great signifi-

cance on their own, such as Schur’s Lemma in my field of Representation Theory, Burntside’s

Lemma in Group Theory, Yoneda’s Lemma in Category Theory, or Zorn’s Lemma, which

can be shown is logically equivalent to the Axiom Of Choice.

3.1 Trivial and Vacuous Proofs

Nearly all implications we will encounter are quantified statements (or implicitly implied to

be quantified statements), i.e. “for all x, if P pxq then Qpxq.” It is rare that P pxq or Qpxq

are true for all x P S, so whether P pxq or Qpxq is true ordinarily depends on which element

x P S is considered. Let’s recall the truth table of ñ:
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P pxq Qpxq P pxq ñ Qpxq

T T T

T F F

F T T

F F T

Note that (or recall the logical equivalence) if Qpxq is true for all x P S or P pxq is false for

all x P S, then no matter what the other statement’s truth value is, P pxq ñ Qpxq is true!

A situation where we can show Qpxq is true for all x P S is called a trivial proof and a

situation where we can show P pxq is false for all x P S is called a vacuous proof. We

say “this statement is trivially/vacuously true” in this instance. This is not to be confused

with saying “this proof is trivial” which some mathematicians say to just say that a proof is

“easily” completed by the reader. Try not to say that unless it is absolutely clear that the

proof is easily completed by anyone.

Example 3.2. (a) Consider the statement “Let n P Z. If n3 ą 0, then 3 is odd.” Written

in symbolic form, this is @n P Z, P pnq ñ Q, where P pnq : n3 ą 0, and Q : “three is

odd.” A trivial proof here consists of only observing that 3 is an odd integer.

(b) Let’s prove the following: “Let x P R. If x ă 0, then x2 ` 1 ą 0.”

Proof. Since x2 ě 0 for all x P R, it follows that

x2 ` 1 ą x2 ě 0.

Hence x2 ` 1 ą 0, so the implication is true.

Note that we end the proof with a box - this is standard notation for denoting a proof

is complete. If we write out the statement as “@x, P pxq ñ Qpxq”, we’ve demonstrated

Qpxq is always true, hence the implication is true.

(c) Let’s prove: “Let x P R. If x2 ´ 2x` 2 ď 0, then x3 ě 8.

Proof. First observe that

x2 ´ 2x` 1 “ px2 ´ 1q2 ě 0.

Hence x2 ´ 2x` 2 “ px´ 1q2 ` 1 ě 1 ą 0. Thus x2 ´ 2x` 2 ď 0 is false for all x P R,

so the implication is true.

If we write out the statement as @x, P pxq ñ Qpxq, we’ve demonstrated P pxq is false,

hence the implication is true.

Trivial or vacuous proofs occur very rarely in mathematics, but it is important to understand

their significance logically.
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3.2 Direct Proofs

Typically if we have a statement P pxq ñ Qpxq (implicitly implying the quantifier) we wish

to prove, there is some connection between P pxq and Qpxq, that is the truth value of Qpxq

depends on the truth value of P pxq. These are the mathematically and logically interesting

statements we will be working with.

If it is our goal to show P pxq ñ Qpxq, then if P pxq is false for some x P S, we know the

implication is vacuously true. Therefore, we only need to concern ourselves with the values

of x where P pxq is true - namely, the only concern is that Qpxq may be false. To prove the

implication then, we assume P pxq is true for some arbitrary x P S, and show that Qpxq must

be true as well for this element x. This method of proof is the most common in mathematics,

it is a direct proof.

Gaining skill at these proofs simply takes practice, but seeing examples of proof strategies,

that is, plans of attack, can help. Additionally, performing proof analysis in post can help

us improve our proofwriting abilities. Let’s go through examples:

Example 3.3. (a) Let’s prove the statement “If n is an odd integer, then 3n ` 7 is an

even integer.”

Proof. Recall an even integer is an integer a which can be expressed as a “ 2b for some

integer b. Assume that n is odd, since n is odd, we may write it as n “ 2k`1 for some

integer k. Now,

3n` 7 “ 3p2k ` 1q ` 7 “ 6k ` 3` 7 “ 6k ` 10 “ 2p3k ` 5q.

Since 3k` 5 is an integer, identifying b from above with 3k` 5 demonstrates 3n` 7 is

even.

(b) For two integers m,n P Z, we say m divides n, written m | n, if n “ mk for some

integer k. For example, 4 | 48, ´3 | 27, and ´101 | 0. Let us prove the statement “For

3 integers a, b, c, if a | b and b | c, then a | c.”

Proof. Since a | b, we may write b “ ax for some integer x, and since b | c, we may

write c “ yb for some integer y. Therefore, c “ ypaxq “ pxyqa, and since xy is an

integer, we conclude a | c.

(c) Let’s prove the statement “Let a, b, c, x, y P Z. If a|b and a|c, then a|pbx` cyq.”

Proof. Assume a|b and a|c, then we may write b “ ar and c “ as for some r, s P Z.

Then,

bx` cy “ parqx` pasqy “ aprx` syq.

Since rx` sy is an integer, a|pbx` cyq as desired.
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(d) Let’s prove the statement “For all sets A,B, A ´ B “ A X B.” Note that there is no

implication here other than assuming A,B are sets. We simply need to show that the

sentence is true with that assumption. Recall we show sets are equal by showing they

contain each other.

Proof. We prove this by showing A ´ B Ď A X B, then by showing A ´ B Ě A X B.

Let x P A´B. Then x P A and x R B. Since x R B, it follows x P B, and since x P A,

x P AXB. Thus, A´B Ď AXB.

Now suppose y P A X B. Let y P A X B, it follows that y P A and y P B, and this

implies y R B. Now because y P A and y R B, we conclude that y P A ´ B, and thus,

AXB Ď A´B. Since both sets are subsets of each other, they must be equal.

(e) Let’s prove the statement “If x, y P R, then x2 ` y2 ě 2xy.”

Proof. Recall for any r P R that r2 ě 0. Identify r with px´yq, so we have px´yq2 ě 0.

This expands to x2 ´ 2xy ` y2 ě 0, and adding 2xy to each side of the inequality

completes the proof.

For this proof it may have not been obvious to begin with the statement px´ yq2 ě 0.

Sometimes, it helps to begin with what we want to show, and work backwards. Working

backwards doesn’t necessarily constitute a proof, but it can give us a good idea of what

we need to do.

3.3 Proof by Contrapositive

Recall that the implication P ñ Q is logically equivalent to its contrapositive p„ Qq ñ p„

P q. This gives us an alternative way of proving statements of the form @x P S : P pxq ñ Qpxq,

by proving @x P S : p„ Qpxqq ñ p„ P pxqq instead - this is a proof by contrapositive.

Example 3.4. Let’s prove, “Let x P Z. If 5x´ 7 is even, then x is odd.”

Proof. We prove the contrapositive, “if x is even, then 5x ´ 7 is odd.” If x is even, then

x “ 2k for some k P Z. Then 5p2kq ´ 7 “ 10k ´ 7 “ 2p5k ´ 4q ` 1, hence 5x´ 7 is odd.

So far, we have been only proving implications, rather than biconditionals. However, proving

a biconditional statement isn’t much different, if we have a biconditional @x P S, P pxq ô

Qpxq, this is equivalent to proving @x P SP pxq ñ Qpxq and @x P S,Qpxq ñ P pxq. Some-

times, it is easier to prove the contrapositive of one of these statements, so we instead show,

@x P S, P pxq ñ Qpxq and @x P S, p„ P pxqq ñ p„ Qpxqq.

Example 3.5. Let’s prove, “Let x P Z. Then x2 is even if and only if x is even.”
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Proof. (ð) First, we show x is even implies x2 is even. Let x “ 2k, then x2 “ 4k2 “ 2p2k2q,

hence x2 is even. (ñ) We show the contrapositive, that is, if x is odd, then x2 is odd. Let

x “ 2k ` 1, then x2 “ 4k2 ` 4k ` 1 “ 2p2k2 ` 2kq ` 1, hence x2 is odd.

Note that I am being terse here by not specifying that k is an integer, however it is clear by

the usage at this point that it is, so it is an acceptable omission of clarity.

3.4 Proof by Cases

Sometimes when we’re giving a proof of a mathematical statement concerning some x P S, it

helps to note that x can have some sort of property which defines a subset of S, for example,

“x even” and “x odd” make up two subsets of Z, and “x positive,” “x negative,” and “x “ 0”

make up three. If we can verify the truth of the statement for each possible property that

x can have, we have a proof of the statement. Such a proof is divided into cases, each

case corresponding to a property x can have. This is a proof by cases. This is a vague

description, but some examples should help.

Example 3.6. (a) If n P Z, then n2 ` 3n` 5 is odd.

Proof. We proceed by cases, corresponding to if n is even or odd. If n is even, then

suppose n “ 2x. We have:

n2
` 3n` 5 “ p2xq2 ` 3p2xq ` 5 “ 4x2 ` 6x` 5 “ p2p2x2 ` 3x` 2q ` 1.

Hence, n2 ` 3n` 5 is odd.

If n is odd, then let n “ 2y ` 1. Then,

n2
` 3n` 5 “ p2y ` 1q2 ` 3p2n` 1q ` 5

“ 4y2 ` 10y ` 9

“ 2p2y2 ` 5y ` 4q ` 1

Hence, n2 ` 3n` 5 is odd. Since we have satisfied all cases for n, we are done.

(b) Let x, y P R. xy “ 0 if and only if x “ 0 or y “ 0.

Proof. pðq The reverse direction is obvious.

pñq Suppose xy “ 0. We consider two cases, if x “ 0 or if x ‰ 0. If x “ 0 then we

are done. Otherwise, if x ‰ 0, then 1{x is a real number. Therefore multiplying the

equality xy “ 0 by 1{x on each side yields the equality y “ 0, as desired.

Sometimes, we may omit casework that involves assigning cases to different variables which

play out identically (it will become clear what this means with an example) - when we do

this, we write without loss of generality, or WLOG for short.
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Example 3.7. Let x, y P Z. If 3 - xy, then 3 - x and 3 - y.

Proof. We prove the contrapositive, which is, “If 3 | x or 3 | y, then 3 | xy. Suppose

without loss of generality that 3 | x. Then x “ 3z for some z, so xy “ p3zqy “ 3pzyq,

hence 3 | xy.

Here, we omitted the case where 3 | y because it would follow in the exact same manner as

before, only with reversed variables. Be careful to not abuse the power of WLOG and cut

out cases which may actually play out differently! Usually the only time WLOG is usable is

when we are given a scenario like “a or b has some property.”

Proofs involving sets very frequently involve casework. Sometimes the casework is unavoid-

able but sometimes, we can exploit symmetry to use WLOG.

Example 3.8. (a) For every two sets A and B,

pAYBq ´ pAXBq “ pA´Bq Y pB ´ Aq

Proof. pĎq Suppose x P pAYBq´pAXBq. Then x P AYB and x R AXB. Therefore,

either x P A or x P B. Without loss of generality, we can assume x P A. Since

x R AX B, we have x R B. Therefore, x P A´ B, and hence, x P pA´ Bq Y pB ´ Aq.

Hence,

pAYBq ´ pAXBq Ď pA´Bq Y pB ´ Aq

pĚq Now, suppose x P pA ´ Bq Y pB ´ Aq. Then, either x P pA ´ Bq or x P pB ´ Aq,

without loss of generality, say x P pA´Bq. Therefore, x P A and x R B. So x P AYB,

but x R AXB. Therefore, x P pAYBq ´ pAXBq, and hence

pAYBq ´ pAXBq Ě pA´Bq Y pB ´ Aq

as desired.

Note that we can end the proof with an “as desired” rather than restating the conclusion

if it is obvious enough what the conclusion is.

We finish with an important theorem concerning real numbers. (draw a picture)

Theorem 3.9. (The Triangle Inequality). For every two numbers x, y,

|x` y| ě |x| ` |y|

Proof. Since |x` y| “ |x| ` |y| if either x, y are 0, then we can assume x and y are nonzero.

We proceed by cases.

(a) x ą 0 and y ą 0. Then x` y ą 0, so |x` y| “ x` y “ |x| ` |y|.
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(b) x ă 0 and y ă 0. Then x` y ă 0, so |x` y| “ ´px` yq “ p´xq ` p´yq “ |x| ` |y|.

(c) x, y have opposite sign, suppose without loss of generality that x ą 0 and y ą 0. We

consider two subcases.

(a) x` y ě 0. Then,

|x| ` |y| “ x` p´yq “ x´ y ą x` y “ |x` y|

(b) x` y ď 0. Then

|x| ` |y| “ x` p´yq “ x´ y ą ´x´ y “ ´px` yq “ |x` y|

Thus, |x` y| ď |x| ` |y| for all x, y P R.

3.5 Introduction to Modular Arithmetic

We now briefly diverge our study of proof techniques to introduce a method of characterizing

numbers that is preserved under various operations such as addition, multiplication, and

raising to powers. These will give rise to plenty of opportunities for straightforward proofs

to practice on.

As a motivating example, consider two integers x, y which are the same parity, that is,

they are both odd or both even. It follows that 2 | px ´ yq, that is, their difference is even.

Consequently, 2 | px´ yq if and only if x and y have the same remainder divided by two.

Or considering 3 instead of 2, any integer can be expressed as 3q, 3q ` 1, 3q ` 2 for some

integer q, based on what its remainder is when divided by 3. If two integers x, y have the

same remainder when divided by 3, it follows that 3 | px ´ yq. This may be generalized for

numbers n ě 2.

Definition 3.10. Given two integers a, b and an integer n ě 2, we say a is congruent to

b modulo n if n | pa ´ bq. We express this as a ” b mod n. For example, 4 ” 7 mod 3,

as 3 | p7 ´ 4q. Doing arithmetic under modular number systems is known as modular

arithmetic.

Note that every integer x is equivalent to some number 0 ď k ď n modulo n, so when

working modulo n, it suffices to only consider naturals less than n, and we generally only

express numbers in this way. For example, with n “ 4, every integer satisfies x ” 0, 1, 2, 3

mod 4. So we would write 2 ¨ 3 ” 2 mod 4, since 6 ” 2 mod 4.

Let’s go over some fundamental properties of modular arithmetic, with proofs attached. We

will often use these properties in the future, which will eliminate the need to consult the

definition of modulo, but for these first few proofs, everything will be proven via definition.

Proposition 3.11. Let a, b, k, n P Z with n ě 2. If a ” b mod n, then ka ” kb mod n.
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Proof. Let a ” b mod n. Then n | pa´ bq, so a´ b “ nx for some integer x. Therefore,

ka´ kb “ kpa´ bq “ kpnxq “ npkxq.

Therefore, n | pka´ kbq and hence, ka ” kb mod n.

We may prove using essentially the same proof that if a ” b mod n, then a ` k ” b ` k

mod n. However, these two facts don’t necessarily allow us to add numbers of different inte-

gral value but same modular value. For example, if we have 1 ” 4 mod 3, then 1`2 ” 4`2

mod 3, but it is not necessarily true yet that 1` 2 ” 4` 5 mod 3, despite 2 ” 5 mod 3.

Fortunately, the next two theorems will assert that essentially, we can perform addition and

multiplication in modular arithmetic without any concern.

Theorem 3.12. Let a, b, c, d, n P Z, and n ě 2. If a ” b mod n and c ” d mod n, then

a` c ” b` d mod n.

Proof. Assuming the statement, we have n | a´ b and n | c´ d, so we may write a´ b “ nx

and c´ d “ ny for some integers x, y. Adding these equalities obtains:

pa´ bq ` pc´ dq “ nx` ny

and so

pa` cq ´ pb` dq “ npx` yq.

Therefore, n | pa` cq ´ pb` dq, as desired.

Theorem 3.13. Let a, b, c, d, n P Z, and n ě 2. If a ” b mod n and c ” d mod n, then

ac ” bd mod n.

Before we proceed, let’s note that we may need a different strategy. If we multiply pa ´

bqpc´ dq, we obtain ac` bd´ bc´ ad, which are more terms than we want to have to show

that ac ” bd mod n.

Proof. Assuming the hypothesis, we have a´ b “ nx and c´d “ ny for some x, y P Z. Thus

a “ b` nx and c “ d` ny. Multiplying these two equations yields:

ac “ pb` nxqpd` nyq “ bd` dnx` bny ` n2xy “ bd` npdx` by ` nxyq

Thus, n | ac´ bd, so ac ” bd mod n, as desired.

These last two theorems essentially tell us that in doing arithmetic, it is always okay to

simplify computations down to integers less than n. We will come back to modular arithmetic

after introducing a few more proof techniques.
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4 More Proof Techniques: Existence, Proof by Con-

tradiction

We next introduce some more proof techniques and a different type of statement which

requires a different approach to proving, statements which require proof of existence rather

than statements using the universal qualifier.

4.1 Counterexamples

Definition 4.1. Obviously, not all quantified statements of the type @x P S,Rpxq are false.

Recall that the negation of that statement is Dx P S,„ Rpxq - such an element x is called

a counterexample of the false statement @x P S,Rpxq, and the discovery of such a coun-

terexample verifies the falseness of the claim. Note that if Rpxq is an implication, so the

statement is of the form @x P S, P pxq ñ Qpxq, then a counterexample x would be such an x

for which P pxq is true but Qpxq is false.

From now on, some problems will now be presented in “prove or disprove” fashion. While

many of these problems will be disprovable with a counterexample, some of them will be

true! This is to help build and test your mathematical intuition.

Example 4.2. Prove or disprove: “If x P R, then px2 ´ 1q2 ą 0”

Proof. The above statement is false. Choosing x “ 1 gives p12 ´ 1q2 “ 0.

Example 4.3. Prove or disprove: “If x is a real number, then tan2 x` 1 “ sec2 x.”

One may recall this equality from a precalculus course. Does this mean it is true?

Proof. The above statement is false. If x “ π{2, then both tan π{2 and secπ{2 have no

numerical value, and hence, the given equality cannot hold.

However, the statement is true if one rewrites the statement as follows: “If x P R, then if

both tanx and secx have numerical value, then tan2 x` 1 “ sec2 x.” The proof is left as an

exercise (hint: sin2 x` cos2 x “ 1)

Example 4.4. Prove or disprove: Let a, b be nonzero real numbers. If x, y P R`, then:

a2

2b2
x2 `

b2

2a2
y2 ą xy.

Sometimes, it helps to play around with a problem statement if we don’t know if a statement

is obviously true or false.
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Proof. First, we multiply the inequality by 2a2b2 to eliminate all fractions, obtaining

a4x2 ` b4y2 ą 2a2b2xy ô a4x2 ´ 2a2b2xy ` b4y2 ą 0

Note we may factor this to

pa2x´ b2yq2 ą 0.

Choosing x “ b2 and y “ a2 demonstrates that the statement is false.

As demonstrated in the proof, the statement is true if we replace the ą with a ě. A well-

written proof can do more than just demonstrate something is true or false, but rather, some

of the inner workings of the problem.

Note that in the previous problems that most arithmetic manipulation of an expression

gives rise to logically equivalent statements. However, note that some operations are non-

reversible, such as squaring.

4.2 Proof by Contradiction

If we have an statement R we wish to show is true, we already have two methods, direct

proof and contrapositive proof (I am now considering proof by cases a type of direct proof).

We now introduce a new method which can sometimes be the path of least resistance for

some problems.

Suppose we assume R is false, and from this assumption, we reach a statement that contra-

dicts some assumption we made in the proof or some other known fact. If we call this fact P ,

then we have deduced C “ P ^p„ P q, establishing the truth of the implication p„ Rq ñ C.

The only way this can be true is if p„ Rq is false, that is, R is true. This technique is called

a proof by contradiction. We often begin by writing

Suppose for contradiction that R is false.

If R is a quantified statement @x P S, P pxq ñ Qpxq, a proof by contradiction consists of

verifying the implication

„ pf@x P S, P pxq ñ Qpxqq ñ C

for some contradiction C. However, recall the logical equivalence

„ pf@x P S, P pxq ñ Qpxqq ” Dx P S, pP pxq ^ p„ Qpxqq,

so a proof by contradiction begins by assuming there exists some element x P S for which

P pxq is true but Qpxq is false. We would begin by writing

Suppose for contradiction that there exists some x for which P pxq is true and Qpxq is false.

Let’s see some examples!

Example 4.5. Prove that there is no smallest positive real number.
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Proof. Suppose for contradiction that there is a smallest real number r. Then 0 ă r{2 ă r,

which contradicts r being the smallest real number.

Example 4.6. If a is an even integer and b is an odd integer, then 4 - pa2 ` 2b2q.

Proof. Suppose for contradiction that a is even, b is odd, and 4 | pa2 ` 2b2q. Let a “ 2x, b “

2y ` 1, and a2 ` 2b2 “ 4z for some integers x, y, z. Then,

a2 ` 2b2 “ p2xq2 ` 2p2y ` 1q2 “ 4z

Simplifying obtains 4x2 ` 8y2 ` 8y ` 2 “ 4z, or equivalently,

2 “ 4z ´ 4x2 ´ 8y2 ´ 8y “ 4pz ´ x2 ´ 2y2 ´ 2yq

This implies 4 | 2, which is impossible.

A divisibility statement can often be reworded into a statement about modular arithmetic.

We could also prove this via modular arithmetic, as the statement is equivalently saying that

a2 ` 2b2 ı 0 mod 4.

Proof. We wish to show that a2 ` 2b2 ı 0 mod 4. Observe that if a is even, then a2 ” 0

mod 4, and if b is odd, then b2 ” 1 mod 4. Then a2 ` 2b2 ” 2 mod 4, as desired.

Let’s now prove an important theorem, establishing the irrationality of
?

2.

Theorem 4.7.
?

2 is irrational.

Proof. Suppose for contradiction that
?

2 is rational. Express
?

2 “ a{b, where a and b are

relatively prime integers. Then 2 “ a2{b2, so a2 “ 2b2. Since b2 is an integer, a2 is even.

Then from an earlier result, a is even as well. Therefore, we may write a “ 2k for some

k P Z. Then, p2kq2 “ 4k2 “ 2b2, which reduces to 2k2 “ b2, and thus, b2, and therefore b, is

even as well. However, this implies that 2 divides both a and b, which contradicts the fact

that a and b are relatively prime.

One may use a similar proof to show that
?
p is irrational for any prime p. One may gener-

alize to show that
?
n is irrational for any nonsquare n, but it takes a bit more work. This

result is a classic example where proof by contradiction is by far the easiest method of proof.

To wrap up, let’s next prove a classical result, that there are infinitely many primes. The

argument will be made a bit simpler by utilizing modular arithmetic.

Theorem 4.8. There are infinitely many primes.

Proof. Suppose for contradiction that there are finitely many primes, call them p1, . . . , pk.

Recall that every number may be expressed uniquely as a product of primes, so every positive

integer greater than 1 must be divisible by at least one of these primes. Consider the number

n “ p1p2 . . . pk ` 1. We may observe that n ” 1 mod pi for any i P t1, . . . , ku. Therefore,

no prime divides n, a contradiction.
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4.3 Recap - Three Implication Proof Methods

To sum up the past few sections, we’ve covered three methods of proof when presented with

a statement of the form @x P S, P pxq ñ Qpxq. For each of these, you should know how a

proof should start and what the end goal is.

• Direct: “Assume that there exists x P S such that P pxq is true” We aim to show Qpxq

is true for this element x.

• Contrapositive: “Assume there exists x P S such that Qpxq is false.” We aim to

show P pxq is false for this element x.

• Contradiction: “Assume there exists x P S such that P pxq is true and Qpxq is false.”

We aim to produce a contradiction.

Some statements can be completed using any of the three techniques, while others are most

easily proven using one specific technique. Generally, for statements that can be proven in

any of these ways, it is considered good form to prove something directly, but there are

counterexamples. Let’s see an example of using proof by contradiction unnecessarily:

Example 4.9. Show that if 4 divides an integer n, then n is even.

Proof. Suppose for contradiction that n is not even. Since 4 divides n, we have n “ 4k for

some integer k. Then n “ 2p2nq, which is even. This is a contradiction.

What went wrong here? The contradictory hypothesis in the first sentence was totally

unnecessary - we could delete the first and last sentences and we would have an airtight

proof!

4.4 Existence Proofs

For a existence theorem, the existence of an object is asserted. The statements are

generally of the form,

Dx P S : Rpxq : There exists x P S such that Rpxq.

An existence proof may consist of simply finding some x P S for which Rpxq is true and

demonstrating its truthness, or it may not give a specific x P S but assert its existence some-

how. Many existence theorems demonstrate the existence of some object, but not which

object it specifically is. For example, David Hilbert says “There is at least one student in

the class for whom the following statement is true: No other student in the class has more

hairs on their head than this person. Which student is it? That we shall never know, but

their existence is absolutely certain.”

The following example is a classic!
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Example 4.10. There exist irrational numbers a and b such that ab is rational.

Proof. Consider the number
?

2
?
2
. This number is either rational or irrational, so we con-

sider these cases separately:

(a) If
?

2
?
2

is rational, we are done.

(b) If
?

2
?
2

is irrational, we consider

ˆ

?
2
?
2
˙

?
2

“
?

2
?
2
?
2
“
?

2
2
“ 2,

and we are done.

We don’t know which choice of a, b are the proper ones for which ab is rational, but we know

beyond a shadow of a doubt that one of those two choices must work!

We state an important theorem without proof - for the proof, take real analysis.

Theorem 4.11. (Intermediate Value Theorem) If f is a function that is continuous on the

closed interval ra, bs and k is a number between fpaq and fpbq, then there exists a number

c P pa, bq such that fpcq “ k.

We can use this as follows:

Example 4.12. The function fpxq “ x5 ` 2x ´ 5 defined on R has a root between x “ 1

and x “ 2.

Proof. Observe that fp1q “ ´2 and fp2q “ 31, so fp1q ă 0 ă fp2q, and therefore by the

IVT, there exists some c P p1, 2q for which fpcq “ 0, as desired.

We haven’t had much experience citing other theorems when proving things, generally at

this stage of your mathematical career it doesn’t hurt to restate the theorem, or at least hint

at what its implication is, before using it. Generally “by [theorem],” or “[theorem] implies..”

is good form.

Recall earlier when I brought up uniquenness statements, something of the form

D!x P S,Rpxq, There exists a unique x P S such that Rpxq.

To prove statements of this form, we must also demonstrate that x is the only element in S

satisfying Rpxq. There are a few ways of doing this.

• Assume that a, b are elements of S satisfying Rpxq, show they are equivalent.
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• Assume that a, b are distinct elements of S satisfying Rpxq, produce a contradiction.

• If a is known, show that all b ‰ a P S do not satisfy Rpxq.

Example 4.13. The function fpxq “ x5 ` 2x ´ 5 defined on R has a unique root between

x “ 1 and x “ 2.

Proof. We have established existence of a root. Suppose for contradiction that fpxq has two

distinct roots in p1, 2q, a and b. Suppose without loss of generality that 1 ă a ă b ă 2.

Recall ir r ą 1, then rk ą r for any integer k ě 2. Therefore a5 ` 2a´ 5 ă b5 ` 2b´ 5. On

the other hand, a5 ` 2a´ 5 “ b5 ` 2b´ 5 “ 0, a contradiction. Thus fpxq has a unique root

in p1, 2q.

Of course, not all existence statements are true. To disprove existence statements, remember

the negation:

pDx P S : Rpxqq ” @x P S : p„ Rpxqq

Example 4.14. Prove or disprove: There is a real number x such that x6`2x4`x2`2 “ 0.

Proof. Let x P R. Observe x6, x4, x2 ě 0, so

x6 ` 2x4 ` x2 ` 2 ě 2 ą 0.

Thus the statement is false.
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5 Induction

We now come to a new proof method, induction. Induction works when we have some infi-

nite collection of statements that we can order, i.e. P p1q, P p2q, P p3q, . . . . To motivate the

concept, let’s consider the following scenario: (this would work better if we were in person,

but we aren’t, so here we go)

I have you all stand in a line. I every single person other than the first one to raise their

hand after they see the person directly in front of them do so. Then, I tell the person first

in line. What happens? Everyone raises their hand!

Mathematical induction works similarly - if we can show that P p1q is true, and that P p1q

implies P p2q, P p2q implies P p3q, and so on, then we will have that P pnq is true for any n.

This is just an overview, there are some technicalities which must be discussed first.

5.1 The Well-Ordered Principle & Induction

Definition 5.1. Let A be a nonempty set of real numbers. A number m P A is called a

least element or minimum of A if x ě m for all x P A. Note that if A has a least element,

then this element is unique.

Example 5.2. R,Q,Z do not have a least element, but N does. R` and Q` do not have

a least element, but the set r0,8q does. In general, all closed intervals and finite unions

of closed intervals have a least element, and all open intervals do not have a least element.

Recall from HW1 though that it is possible for an infinite intersection of open intervals to

have a least element!

Definition 5.3. A set A under a total ordering pA,ěq is well-ordered if every subset of A

has a least element.

Note that being indexed by N or having a least element is not sufficient to be a well-ordered

set.

Example 5.4. • A set that is not well-ordered despite being indexed by N is:

"

1

n
: n P N`

*

• A set that has a least element but is not well-ordered is tr P R : r ě 0u.

Theorem 5.5. (Well-Ordering Principle) N and any subset of N is well-ordered.

We can use this now to prove the validity of induction.
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Theorem 5.6. (Principle of Mathematical Induction) For each positive integer n, let P pnq

be a statement. If

(a) P p1q is true, and

(b) The implication P pkq ñ P pk ` 1q is true for every positive k,

then P pnq is true for every positive integer n.

Proof. Suppose for contradiction that the theorem is false. Then the two conditions are

satisfied but there exist some positive integers n for which P pnq is false. Let S “ tn P N :

P pnq is false.u Ă N. It follows by the Well-Ordering Principle that S has a least element s.

Since P p1q is true, s ě 2, and s ´ 1 P N`. Therefore, s ´ 1 R S, so P ps ´ 1q is true. But

P ps´ 1q ñ P psq is true, so P psq must be true as well, a contradiction!

Remark 5.7. Therefore, the quantified statement @n P N`, P pnq can be proven in two

steps:

(a) The Base Case: Prove P p1q is true.

(b) The Inductive Step: Assume P pnq for some n ě 1 (this is the Inductive Hypoth-

esis) and prove P pn` 1q is true.

This is a proof by induction.

A classic example of easy proofs by induction are sum formulas (which can usually be proven

in more interesting combinatorial ways). Let’s see an example:

Example 5.8. Prove the following equality:

n
ÿ

k“1

k2 “
npn` 1qp2n` 1q

6

Proof. We proceed by induction. For n “ 1, we see 12 “ 1¨2¨3
6

, so the base case n “ 1 is

satisfied. Now, assume that

12
` ¨ ¨ ¨ ` n2

“
npn` 1qp2n` 1q

6
.

We wish to prove that:

12
` ¨ ¨ ¨ ` pn` 1q2 “

pn` 1qpn` 2qp2n` 3q

6
.
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Remark 5.9. Note that we can retool induction if we instead have a quantified statement

@n P S, P pnq where S is a subset of Z which has a least element e. In this case, the base

case requires we prove P peq is true, and in the inductive step, we assume P pnq is true for

some n ě e. This is the slightly more general form of induction.

Example 5.10. For every integer n ě 5, 2n ą n2.

Proof. We proceed by induction. Since 25 ą 52, the base case is satisfied for n “ 5. Now

assume that 2n ą n5 for some n ě 5. We show that 2n`1 ą pn` 1q2. Observe that

2n`1 “ 2 ¨ 2n ą 2n2
“ n2

` n2
ě n2

` 5n

“ n2
` 2n` 3n ě n2

` 2n` 15

ą n2
` 2n` 1 “ pn` 1q2

Thus, 2n`1 ą pn` 1q2, so by induction, 2n ą n2 for every integer n ě 5.

Observe that in the algebra, we used both the base case and the inductive hypothesis when

simplifying, as well as the assumption that n ě 5. Let’s now see an induction proof using

sets. Recall De Morgan’s law which states for two sets A,B that AYB “ AXB.

Example 5.11. For any finite collection of sets A1, . . . An,

A1 Y ¨ ¨ ¨ Y An “ A1 X ¨ ¨ ¨ X An

The corresponding statements Pn correspond to when there are n sets.

Proof. We proceed by induction. The base case n “ 1 is trivial, and for n “ 2, the result is

given by De Morgan’s law, and is therefore true. We now assume the result is true for n ě 2

sets, that is,

A1 Y ¨ ¨ ¨ Y An “ A1 X ¨ ¨ ¨ X An.

We wish to show the following:

A1 Y ¨ ¨ ¨ Y An Y An`1 “ A1 X ¨ ¨ ¨ X An X An`1.

Let B “ A1 Y ¨ ¨ ¨ Y An. We may write

A1 Y ¨ ¨ ¨ Y An Y An`1 “ B Y An`1

Then, by De Morgan’s law,

B Y An`1 “ B X An`1

By the inductive hypothesis, we also have

B “ A1 Y ¨ ¨ ¨ Y An

Therefore,

A1 Y ¨ ¨ ¨ Y An Y An`1 “ B Y An`1 “ B Y An`1

“ A1 X ¨ ¨ ¨ X An X An`1

as desired.
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We wrap up this section by looking at where an inductive proof can fail. Let’s consider the

following statement and “prove” it:

Example 5.12. In any finite group of horses, all horses are the same color.

Proof. We proceed by induction. For n “ 1 horse, the statement is trivial. Now let’s assume

that any n horses all are the same color and consider a set of n` 1 horses, H1, . . . , Hn`1. By

induction, the horses H1, . . . , Hn all are the same color, and again by induction, the horses

H2, . . . , Hn`1 are all the same color. Therefore, horse Hn`1 is the same color as the first n

horses. Thus, all horses are the same color.

But obviously, this cannot be true. Where is the hole in the proof? We used the inductive

hypothesis correctly... (give the class a moment to think). The issue arises in our base case,

and that our inductive step proof only works when we have n ě 2 horses or more! In the case

when n` 1 “ 2, the two sets do not overlap, so the inductive step does not work! Therefore

we also need to provide a base case for n “ 2 horses - but this is clearly impossible. The

lesson here is as follows: make sure your inductive step works in generality for any n - and

for any cases that do not, include them in your base cases.

5.2 Proof by Minimum Counterexample

Some statements of the form we’ve been proving, that is, @n P N,P pnq, are not well-suited to

be proven by induction. However, there is another technique we can utilize which utilizes the

well-orderedness of the naturals and contradiction. We begin by supposing that @n P N,P pnq

is false - then there must exist some positive integers k for which P pkq is false. By the well-

ordered principle, there must exist a smallest positive integer k for which P pkq is false, and

for any 1 ď i ă k, P piq is true. This integer k is called a minimum counterexample of

the statement. We now have a wealth of possibilities to find a contradiction, some include

• Deducing that there exists some i ă m for which P piq is false, contradicting minimality

of m.

• Showing that P pmq is also true, using the fact that P piq is true for i ă m.

Let’s illustrate with an example:

Example 5.13. For every positive integer n,

6 | pn3
´ nq

Proof. Suppose for contradiction there are positive integers n for which 6 - n3 ´ n. Then

there is a smallest positive integer n for which the statement is false, label it m. We now

check some small cases:

• For n “ 1, 6 | 13 ´ 1.
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• For n “ 2, 6 | 23 ´ 2.

Therefore m ě 3, so we may write m “ k ` 2 for some other k P N`. Observe now that:

m3
´m “ pk ` 2q3 ´ pk ` 2q “ pk3 ` 6k2 ` 12k ` 8q ´ pk ` 2q

“ pk3 ´ kq ` 6pk2 ` 2k ` 1q

Recall the general fact that if n | x and n | y, then n | px ` yq. The contrapositive of this

statement is that if n - px ` yq, then n - x or n - y. Applying this here, we have that since

6 - pm3´mq, but 6 | 6pk2`2k`1q, it must follow that 6 - pk3´kq. However, this contradicts

the fact that m was the minimum counterexample, thus proving that 6 | pn3 ´ nq for all

positive n.

Let’s also note that this could also be proven via modular arithmetic:

(sketch). The statement 6 | pn3 ´ nq is equivalently stating that n3 ” n mod 6 for all

positive integers n. Therefore, it suffices to check the statement n ” 0, 1, . . . , 5, which is

easily performed.

This statement could also be proven using strong induction, which will be introduced next

section. One final question would be asking how we knew to substitute m “ k ` 2 rather

than m “ k` 1 - the answer I would give to this isn’t the most enlightening - if we try k` 1

instead, this could also work, but one additional step would be verifying that kpk ` 1q is

even. It is, but it’s extra work and the k ` 2 substitution is simply more fluid.

Example 5.14. For every nonnegative integer n,

3 |
`

22n
´ 1

˘

Proof. Suppose for contradiction there are nonnegative integers for which the above does not

hold. Then there exists a smallest nonnegative integer m for which 3 - 22m ´ 1. Therefore,

3 | 22n ´ 1 for all 0 ď n ă m. Since 3 | 22¨0 ´ 1, it follows that m ě 1, so we may write

m “ k ` 1. By minimality of m, we have 3 | 22k ´ 1, so 22k ´ 1 “ 3x for some integer x.

Consequently, 22k “ 3x` 1. Now, observe that

22m´1
“ 22pk`1q

´ 1 “ 22k`2
´ 1 “ 22

¨ 22k
´ 1

“ 4p3x` 1q ´ 1 “ 12x` 3 “ 3p4x` 1q

This implies 3 | 22m ´ 1, which is absurd.

In the first proof, we contradicted minimality of m, while in the second, we contradicted

the fact that m was a counterexample. Sometimes one strategy is easier than the other,

while other times, either can be used! Remember though - if possible, a proof is best

performed direct. This shouldn’t discourage you from attempting this strategy, but rather,

after completing a proof by minimum counterexample, it may be wise to check if in your

proof, you can eliminate the need for it and turn your proof into a direct induction proof.
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5.3 Strong Induction

We finish with a stronger form of induction, aptly named the Strong Form of Induction

Theorem 5.15. (The Strong Principle of Mathematical Induction) For each positive

integer n, let P pnq be a statement. If

(a) P p1q is true and

(b) the implication

If P piq for every integer i with 1 ď i ď n, then P pn` 1q

is true for every positive integer n,

then P pnq is true for every positive integer n.

The only significant difference between the previous form of induction and strong induction

lies in the inductive hypothesis - previously we only assumed P pnq to show P pn ` 1q is

true, but here we assume all of P p1q, ¨ ¨ ¨P pnq are true. As before, we can also generalize -

we do not have to iterate over N, we can work over any subset of Z which has a least element.

A classic example of mathematical statements which are provable by strong induction are

recursive sequences such as the Fibonacci sequence, that is, sequences where after the

first few terms, the rest of the series is defined recursively via a recurrence relation such

as an`1 “ an ` an´1. Let’s look at some examples.

Example 5.16. Consider the sequence tanu with a1 “ 1, a2 “ 4, and an “ 2an´1´ an´2` 2

for n ě 3. Conjecture a formula for an and prove your conjecture is correct.

Playing around with this sequence, we see a3 “ 2 ¨ 4´ 1` 2 “ 9, and a4 “ 2 ¨ 9´ 4` 2 “ 16.

It seems like the pattern is that an “ n2 - let’s prove it.

Proof. We wish to show an “ n2 for all n ě 1. The base cases n “ 1 and n “ 2 are given to

be true. Suppose the formula holds true for 1, 2, ¨ ¨ ¨n. Then we have

an`1 “ 2an ´ an´1 ` 2 “ 2n2
´ pn´ 1q2 ` 2

“ 2n2
´ pn2

´ 2n` 1q ` 2 “ n2
` 2n` 1 “ pn` 1q2

Thus by strong induction, an “ n2 for all n P N.

5.4 The Fibonacci Numbers

Definition 5.17. The Fibonacci Numbers Fn are defined by F1 “ 1, F2 “ 1, and Fn`2 “

Fn`1 ` Fn for n ě 1.
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The Fibonacci numbers have some incredible patterns (no, not the ones that “occur in

nature,” that’s nothing more than drawing spirals over things). We will encounter some

of the incredible properties of the Fibonacci numbers soon, but first, let’s prove its general

formula with strong induction.

Theorem 5.18.

Fn “

´

1`
?
5

2

¯n

´

´

1´
?
5

2

¯n

?
5

Proof. We prove so by strong induction. For n “ 1, 2, we verify:

F1 “

´

1`
?
5

2

¯

´

´

1´
?
5

2

¯

?
5

“ 1

F2 “

´

1`
?
5

2

¯2

´

´

1´
?
5

2

¯2

?
5

“

´

3`
?
5

2

¯

´

´

3´
?
5

2

¯

?
5

“ 1

Now, let us assume the formula holds for 1, 2, . . . , n, and show it holds for n`1. We compute

directly:

Fn`1 “ Fn ` Fn´1 “

´

1`
?
5

2

¯n

´

´

1´
?
5

2

¯n

?
5

`

´

1`
?
5

2

¯n´1

´

´

1´
?
5

2

¯n´1

?
5

“

1`
?
5

2

´

1`
?
5

2

¯n´1

´ 1´
?
5

2

´

1´
?
5

2

¯n´1

?
5

`

´

1`
?
5

2

¯n´1

´

´

1´
?
5

2

¯n´1

?
5

“

´

1` 1`
?
5

2

¯´

1`
?
5

2

¯n´1

´

´

1` 1´
?
5

2

¯´

1´
?
5

2

¯n´1

?
5

A quick verification demonstrates that:

ˆ

1`
?

5

2

˙2

“ 1`
1`

?
5

2
and

ˆ

1´
?

5

2

˙2

“ 1`
1´

?
5

2

Therefore, the previous line is:

“

´

1`
?
5

2

¯2 ´
1`
?
5

2

¯n´1

´

´

1´
?
5

2

¯2 ´
1´
?
5

2

¯n´1

?
5

“

´

1`
?
5

2

¯n`1

´

´

1´
?
5

2

¯n`1

?
5

Thus, the formula holds for the n` 1 case, and we are done.
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This proof is rather un-enlightening, as it doesn’t tell us where the formula comes from. This

is a tale for another day, however. The Fibonacci numbers often have interesting recurrence

relations, many of which can be proven combinatorially as well as via induction. Let’s see

one:

Example 5.19. For all n ě 1, F 2
n`1 ´ Fn`1Fn ´ F

2
n “ p´1qn.

Proof. We prove with induction. For n “ 1, we have 12 ´ 1 ¨ 1´ 12 “ p´1q1, so the formula

holds. Let us proceed to the inductive step - assume the equality holds for 1, 2, ¨ ¨ ¨n, and we

wish to show it true for n` 1. We proceed using the inductive hypothesis and the definition

of Fibonacci numbers.

F 2
n`2 ´ Fn`2Fn`1 ´ F

2
n`1 “ pFn`1 ` Fnq

2
´ pFn`1 ` FnqFn`1 ´ F

2
n`1

“ F 2
n`1 ` 2Fn`1Fn ` F

2
n ´ F

2
n`1 ´ FnFn`1 ´ F

2
n`1

“ ´F 2
n`1 ` Fn`1Fn ` F

2
n

“ ´pF 2
n`1 ´ Fn`1Fn ´ F

2
nq

“ ´p´1qn

“ p´1qn`1

Therefore, it follows by induction that the equality holds for every n P N.
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6 Evaluating Proofs & Conjectures

Around the midterm, it is a good idea to discuss a few auxiliary topics about proofs. This is

the last chapter, for now, in which we talk about proofs specifically, as we will be moving onto

discussing other interesting topics and applying our proof skills there as a “proof playground.”

6.1 Evaluating Proofs

At this point, we’ve stated plenty of results and have given a proof of each result. Let’s

reverse this process by giving an example of a proof of a result but not stating the result

being proved.

Example 6.1. Given below is the proof of a result.

Proof. Assume that n is an odd integer. Then n “ 2k ` 1 for some integer k. Then

3n´ 5 “ 3p2k ` 1q ´ 5 “ 6k ` 3´ 5 “ 2p3k ´ 1q.

Since 3k ´ 1 is an integer, 3n´ 5 is even.

What is proved above?

(a) 3n´ 5 is an even integer.

(b) If n is an odd integer, then 3n´ 5 is an even integer.

(c) Let n be an integer. If 3n´ 5 is an even integer, then n is an odd integer.

(d) Let n be an integer. If 3n´ 5 is an odd integer, then n is an even integer.

The correct answers are (b) and (d). The proof given is a direct proof of (b) and a proof by

contrapositive of (d). The sentence (a) is an open sentence, not a statement, and is only the

conclusion of (b). Statement (c) is the converse of (b), and the converse of a true implication

is not necessarily true (it is true exactly when an implication is a biconditional). Here, (c)

can be in fact proven true, but simply because a statement is true does NOT imply that a

supposed proof of the statement is valid.

When learning any new mathematical subject, it is quite normal to make mistakes. Part

of learning mathematics is learning from these mistakes, and mistakes of others. For this

reason, we will look at a few examples of (possibly) faulty proofs, and determine where the

proof is invalid, if anywhere at all, and attempt to fix it. Being able to find errors in valid

proofs indicates strong understanding of proof-writing.

Example 6.2. Evaluate the proposed proof of the following result: “If x and y are integers

of the same parity, then x´ y is even.”
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Proof. Let x and y be two integers of the same parity. We consider two cases, according to

whether x and y are both even or both odd.

• Case 1: x and y are both even. Let x “ 6 and y “ 2 which are both even. Then

x´ y “ 4, which is even.

• Case 2: x and y are both odd. Let x “ 7 and y “ 1, which are both odd. Then

x´ y “ 6, which is even.

Although the proof starts fine, assuming x and y are integers of the same parity, and then

proceeding by cases, the proof of each case is incorrect. When we assume that x and y are

even, they must represent arbitrary integers, of which we know nothing more about, not

specific integers.

Example 6.3. Evaluate the proposed proof of the following result: “If m is an even integer

and n is an odd integer, then 3m` 5n is odd.”

Proof. Let m be an even integer and n an odd integer. Then m “ 2k and n “ 2k` 1, where

k P Z. Therefore,

3m` 5n “ 3p2k`5p2k ` 1q “ 6k ` 10k ` 5

“ 16k ` 5 “ 2p8k ` 2q ` 1

Since 8k ` 2 is an integer, 3m` 5n is odd.

The mistake occurs in the 2nd line of the proof, where we assign m “ 2k and n “ 2k`1. We

have inadvertently added the assumption that n “ m` 1, which was never given as a valid

assumption. To be more general here, we must assign m “ 2k and n “ 2l ` 1 for integers

k, l P Z which may or may not be related.

Example 6.4. Evaluate the proposed proof of the following result. “Let x, y P Z such that

3 | x. If 3 | px` yq, then 3 | y.”

Proof. Since 3 | x, it follows that x “ 3a, where a P Z. Assume that 3 | px ` yq. Then

x` y “ 3b for some integer b. Hence y “ 3b´ x “ 3b´ 3a “ 3pb´ aq. Thus 3 | y.

For the converse, assume that 3 | y. Therefore, y “ 3c, where c P Z. Thus x` y “ 3a` 3c “

3pa` cq. Since a` c is an integer, 3 | px` yq.

As a matter of fact, this proof is actually airtight, we’re simply proving a stronger statement,

the ‘iff’ version of this statement.

Example 6.5. Evaluate the proposed proof of the following result. “Given a, b P R`,

p1{a` 1{bqpa` bq ě 4.”
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Proof. We have:
ˆ

1

a
`

1

b

˙

pa` bq ě 4

1`
a

b
`
b

a
` 1 ě 4

a2 ` b2

ab
ě 2

a2 ` b2 ě 2ab

a2 ` b2 ´ 2ab ě 0

pa´ bq2 ě 0

Since pa´ bq2 ě 0, we are done.

Though this proof has the right strategy and all the right algebra, what it has actually proven

is that p1{a ` 1{bqpa ` bq ě 4 implies that pa ´ bq2 ě 0. This is a trivially true statement,

since pa ´ bq2 ě 0 regardless of any condition set on a or b. To correct this proof, we may

simply reverse all the algebraic steps, starting with pa´ bq2 ě 0, and ending with the desired

inequality. Or we can make it clear that each of these algebraic statements are equivalently

true by indicating with an ô between each line (but this generally looks bad).

One final example which I cooked up from the midterm:

Example 6.6. Prove that the product of two irrational numbers is irrational.

Proof. Suppose a, b are irrational, and suppose for contradiction that their product is ratio-

nal. We may write ab “ p
q

for p, q P Z. Since 0 is rational, a and b are nonzero. Therefore

we may divide by b to obtain the equality a “ p
bq

. However, we have now expressed a as a

fraction, implying it is rational. This is a contradiction, thus the product of two irrationals

is irrational.

The error here comes from applying the definition of rationality. A rational number is a

number that can be expressed as a fraction of two integers. Though we have expressed a as

a fraction, b is irrational, so we do not know that the fraction p{pbqq is a fraction consisting

of integers. Make sure when you use a characterization of some concept, you are applying it

entirely!

6.2 Conjectures

In mathematics, if we don’t know if a statement is true, we call the statement a conjecture

(in some cases, an open conjecture). When the conjecture is proved, it becomes a theorem.

However, if the conjecture is shown to be false, not all hope is lost - often new questions

arise from the false conjecture. This is how mathematics develops - by guessing then re-

peating the process, and learning along the way. Most of modern mathematics consists of
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formulating and proving conjectures - conjectures are one of the cornerstones of the culture

of mathematics. We will now look at some famous conjectures, some open, some closed.

Example 6.7. One of the most famous “easy to state” conjectures is the Collatz conjecture.

It is as follows: pick some positive integer n. If it is even, divide it by two. If it is odd,

multiply it by 3, then add one. Then with your new number, apply the same process, and

do this until you arrive at 1.

For example, let’s start with 20. It’s even, so we divide and reach 10. That’s even so we

reach 5. 5 is odd, so we multiply by 3 and add 1 to get 16. 16,8,4,2,1.

The Collatz Conjecture claims that no matter what number is chosen to start, the sequence

always terminates. Surprisingly, the conjecture is still open! It is known that the sequence

stops for up to very large numbers, but no proof exists that the sequence terminates for all

natural numbers. Though this conjecture is relatively “unimportant” mathematically, as in

it has practically no applications or ties into other programs, it is incredible that such an

easily stated problem is not understood fully enough to be proven.

Some conjectures, like the Collatz conjecture, are famous simply because of how long they

have been open. Simply stated open conjectures are especially rare, here is another.

Example 6.8. A word or number is a palindrome if it reads the same forwards and back-

wards. Let’s consider the following process: take a number such as 27. It is not a palindrome,

so reverse its digits (72) and sum the two numbers. 27+72 =99, which is a palindrome, so

we are done.

Let’s repeat with 59. 59 is not a palindrome, so we take 59+95=154. This is not a palin-

drome, so we reverse it and sum the two: 154+451=605. Again, not a palindrome, so we try

again. 506+605=1111, which is a palindrome.

It is conjectured that if we begin with any positive integer and apply the technique described,

we eventually reach at a palindrome. This conjecture is still open as well, but is known for

smaller values.

Simply stated conjectures are by no means guaranteed to have elementary proofs. A famous

conjecture turned theorem is as follows:

Example 6.9. Suppose a country is divided up into states on a map. The question then

remains: is it possible to color the states on a map with 4 colors such that no two touch-

ing states have the same color? The question was originally asked in 1852, and multiple

elementary faulty proofs were proposed at the time. An analogous proof was presented for

5 colors, called the five color theorem (one typically sees this proof in a graph theory course).

In 1976, the Four Color Proof was finally presented - though it was a mathematical proof,

it utilized computers to check over 1000 cases. The proof consisted of reducing checking

every possible graph to checking these 1000. A simply stated problem need not have a

simple solution!
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Example 6.10. Speaking of problems which do not have a simple solution, perhaps the

most famous conjecture in mathematics is Fermat’s Last “Theorem.” Conjectured by Pierre

Fermat around 1637, it states that there do not exist any nontrivial integer solutions to

the equation xn ` yn “ zn for n ą 2. Fermat famously claimed “I have discovered a truly

marvelous proof of this, which this margin is too narrow to contain.” It is highly apocryphal

that such a proof was valid.

The proof was not found until 1993 by Andrew Wiles, who proved so by completing the

Taniyama–Shimura–Weil (a different Weil, Andre Weil) conjectures, which connect various

modern fields of mathematics, and includes the use of Elliptic Curves, Modular Forms,

Algebraic Number Theory, and Algebraic Geometry. That conjecture was originally posed

by Goro Shimura in the 50s. A summarization of the complete proof of Andrew Wiles can be

found on Wikipedia. The lesson here is that sometimes, relying on elementary statements,

like the ones we’ve been using in this course, or even computer verification, like in the four

color theorem, may not be enough to prove some statements. Some statements require

centuries of mathematical discoveries and connections, and the joint work of many brilliant

minds, to be show to be true.

Example 6.11. The final conjectures we will cover here are as follows. The Goldbach

conjecture conjectures that every even integer ě 4 is the sum of 2 primes. This conjecture is

more likely to be closed in the coming years than any of the other open ones we have listed.

A weaker conjecture, that every integer above 5 is the sum of 3 primes, was proven in 2013.

The other is the Twin Prime conjecture, which claims that there are infinitely many pairs

of “twin primes” or primes that differ by 2.

7 Relations, Functions

We now shift gears a bit and introduce relations and functions.

7.1 Relations

In mathematics, there are practically endless ways of relating objects to each other. Here

are some examples: 5 ă 10, 5 ď 5, 6 “ 30{5, 5 | 80, 7 ą 4, x ‰ y, 8 - 3, a ” b mod n, 6 P

Z, X Ď Y, 2 R Z,Z Ę N. In each case, two entities appear on each side of a symbol, and the

symbol expresses some relationship between the two entities. Such symbols are called rela-

tions, since they relate the two objects in question. Rather than focusing on each relation

in individually, we will develop a general theory that covers all relations.

Example 7.1. Consider the set A “ t1, 2, 3, 4u. Elements of A can be compared to each

other by the symbol ă. Imagine trying to explain this to an alien, who has no concept of
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integers. One way you could do this is by explicitly writing the following set:

R “ tp1, 2q, p1, 3q, p1, 4q, p2, 3q, p2, 4q, p3, 4qu

The set R encodes the meaning of the ă relation for A - an ordered pair pa, bq appears if

and only if a ă b.

Definition 7.2. A relation on a set A is a subset R Ď A ˆ A. We often abbreviate the

statement px, yq P R as xRy, and px, yq R R as xRy.

Often I will denote a relation by „.

Example 7.3. For A “ t1, 2, 3, 4u

(a) ď

(b) Parity

(c) Intersection of relations can be seen as combining relations using the conjunction.

(d) Let B “ t0, 1, 2, 3, 4, 5u and let U “ tp1, 3q, p3, 3q, p5, 2q, p2, 5q, p4, 2qu Ď B ˆ B. U is

a relation on B but doesn’t necessarily have any meaning. We may express this in a

directed graph (draw a graph).

(e) Consider the set R “ tpx, yq P ZˆZ : x´ y P Nu. This is another way of expressing ě.

(f) The set R “ tpx, xq P Rˆ Ru is the relation “ on R.

Relations can have certain natural properties which arise.

Definition 7.4. Suppose R is a relation on set A.

(a) R is reflexive if xRx for all x P A.

(b) R is symmetric if xRy implies yRx for all x, y P A.

(c) R is transitive if xRy and yRz implies xRz for all x, y, z P A.

Example 7.5. Let A “ Z.

(a) ă is not reflexive, not symmetric, but transitive.

(b) ď is reflexive, not symmetric, and is transitive.

(c) “ is reflexive, symmetric, and transitive.

(d) | is reflexive, not symmetric, and is transitive.

(e) - is not reflexive, symmetric, or transitive.
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(f) ‰ is not reflexive, is symmetric, and not transitive.

Example 7.6. LetA “ ta, b, c, d, eu and„“ tpb, bq, pb, cq, pc, bq, pc, cq, pd, dq, pb, dq, pd, bq, pc, dq, pd, cqu.

This relation is not reflexive, b „ b but not a „ a. One can verify that „ is symmetric.

One can verify with a lot more work that „ is also transitive (it’s not fun). What is the

relation? It is the the relation “x and y are both consonants.” Once we look at it this way,

it is immediately clear that it is transitive, which illustrates a point: once the meaning of a

relation is known, checking these properties becomes much easier.

(Draw a picture of R) With a picture, some properties of R become a lot clearer than from

the set description.

Visually, the properties look like so:

(a) A relation is reflexive if for each point x, there is a loop at x.

(b) A relation is symmetric if for every directed edge from x to y, there is one from y to x.

(c) A relation is transitive if whenever there are arrows from x to y and y to z, there is

one from x to z. In the case when x “ z, there is a loop at x.

Theorem 7.7. The relation ” mod n on the set Z is reflexive, symmetric, and transitive.

Proof. First we show ” is reflexive. Since n | 0, n | x´ x, and thus x ” x mod n.

Next let’s show ” is symmetric. Suppose x ” y mod n, then n | px´ yq. But n | ´px´ yq

as well, so n | py ´ xq, and hence, y ” x mod n.

Finally, we must show x ” y mod n and y ” z mod n implies x ” z mod n (this was an

exercise. We have n | px´ yq and n | py ´ zq, so x´ y “ nk and y ´ z “ nl for k, l P Z. So

x´ z “ nk ` nl “ npk ` lq, and thus n | px´ zq as desired.

Remark 7.8. One final note - we have specified that a relation R must be defined on a set

A. We can also define a relation between sets. A relation from a set A to a set B is a subset

R Ď AˆB. All the same properties may follow.

7.2 Equivalence Relations

Modulo n is an example of an equivalence relation, a relation which satisfies the three

previously introduced properties.

Definition 7.9. A relation R on a set A is a equivalence relation if it is reflexive, sym-

metric, and transitive. For any a P A, the equivalence class containing a is the subset

ras “ tx P A : xRau Ď A.

Example 7.10. Given set A “ t´1, 1, 2, 3, 4u, we introduce 4 equivalence relations.
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(a) “ is an equivalence relation. It has 5 equivalence classes.

(b) “has same parity as” is an equivalence relation, with 2 equivalence classes, the set of

odd numbers and even numbers.

(c) “has same sign as” is an equivalence relation, with 2 equivalence classes, the positive

and negative numbers.

(d) “has same parity and sign as” is an equivalence relation, with 3 equivalence classes.

Example 7.11. Some equivalence relations on infinite sets are as follows:

(a) Let P be the set of all polynomial with real coefficients. Define a relation „ on P as

follows: given fpxq, gpxq P P , write fpxq „ gpxq when fpxq and gpxq have the same

degree, that is, same highest power of x with nonzero coefficient. So for example,

x2 ` 3x ´ 4 „ 3x2 ´ 2. The equivalence classes of R are easy to describe, they’re

the sets of polynomials with fixed degree. So for example, r3x2 ` 2s is the set of all

polynomials of degree 2. In other words, r3x2 ` 2s “ tax2 ` bx` c, a, b, c P R, a ‰ 0u.

(b) We proved ” mod n is an equivalence relation. The equivalence classes can be rep-

resented by r0s, r1s, . . . , rn ´ 1s. So in this sense, when we do modular arithmetic, we

are actually doing arithmetic on the equivalence classes mod n, not just on numbers!

To be precise: recall we proved that if a ” b mod n and c ” d mod n, then a`c ” b`d

mod n, and similarly for multiplication. This implies that we perform addition and

multiplication as ras ` rbs or ras ¨ rbs modulo n - to do so, take any convenient a1 P ras

and b1 P rbs - then ras ` rbs ” ra1 ` b1s mod n no matter what choice is used.

We denote the integers modulo n by Z{nZ.

(c) The relation “ on the set tpa, bq : a, b P Z, b ‰ 0u given by pa, bq „ pc, dq when ad “ bc

can be more clearly realized as the equivalence “ on the set Q, or loosely, as the

equivalence relation which reduces fractions. In this sense, we can think of Q as the

set of equivalence classes of ZˆpZz0q under this relation „, i.e. 1{2 “ 2{4 are the same

value, and live in the same equivalence class. This is an equivalence relation you’ve

worked with all your life without realizing it!

(d) The antiderivative
ş

fpxq dx is the set of functions F pxq` c whose derivatives are fpxq.

This is an equivalence class in the set of integrable functions, where functions are

related if their difference is a constant.

The point here is that equivalence classes and equivalence relations occur everywhere in

mathematics. This is especially true in advanced mathematics, where equivalence relations

become necessary for constructions or for considering a class of objects in one fell swoop.
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7.3 Partitions

Theorem 7.12. Given an equivalence relation „ on a set A, for a, b P A, ras “ rbs if and

only if a „ b.

Proof. First suppose ras “ rbs. Since a „ a by the reflexive property,

a P tx P A : x „ au “ ras “ rbs “ tx P A : x „ bu

But a belonging to that last set implies a „ b.

Now suppose a „ b. First we show ras Ď rbs. Suppose c P ras. By definition of ras, a „ c.

Since a „ c and a „ b, it follows that b „ c. This implies c P rbs, so ras Ď rbs. The opposite

inclusion follows identically, so ras “ rbs.

Theorem 7.13. If „ is an equivalence relation on a set A, then the set of equivalence classes

of „ forms a partition of A.

Proof. We must show two things, that the union of all equivalency classes ras is equal to A,

and must show that ras X rbs “ H for ras ‰ rbs. To show the former, we must show every

x P A belongs to some equivalency class ras. However, x P rxs, and thus the union of all

equivalency classes is equal to A.

To show the latter, that if ras ‰ rbs, then rasXrbs “ H, we prove via contrapositive. Suppose

ras X rbs ‰ H. Then there exists some x with x P ras and x P rbs. Then from the previous

theorem, x „ a and x „ b, so by transitivity, a „ b and hence ras “ rbs, as desired.

7.4 Functions

Of course you recall what a function is - take for example, fpxq “ x2 - you put in a number

and get another. However, functions can be more than just numerical relationships. Let’s

redefine functions in a more abstract way involving sets and relations.

Definition 7.14. Suppose A and B are sets. A function from A to B (denoted f : AÑ B)

is a relation f Ď AˆB from A to B, satisfying the property that for each a P A the relation

f contains exactly one ordered pair of form pa, bq. The statement pa, bq P f is abbreviated

fpaq “ b.

The domain of f is A and the codomain of f is B. The range or image of f is the set

tfpaq : a P Au, denoted fpAq.

Two functions fpxq, gpxq : A Ñ B are equal if for all a P A, fpaq “ gpaq. Equivalently,

f “ g as sets.

Example 7.15. (a) The function fpxq “ x2 on R can be expressed as the relation tpx, x2q :

x P Ru on R ˆ R. It’s range is r0,8q. Note that the way we wrote it, its codomain is

unclear - it could be R or r0,8q.
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(b) The function f : AÑ B, for setsA “ t0, 1, 2u andB “ ta, b, cu defined by tp0, aq, p1, aq, p2, cqu

is relatively uninteresting. It has domain A, codomain B, and range ta, cu. (draw a

picture)

(c) The function π : ZÑ Z{nZ given by tpx, rxsq : x P Zu is the “projection onto Z{nZ.”

We emphasis that according to the definition, the function is really just a special kind of set,

that is a function f : AÑ B is a subset of AˆB. Another equivalent way to think about it

is a choice to think about it is a choice of element fpaq P B for every a P A. We write this

a ÞÑ fpaq.

Example 7.16. First, note that if we have a function whose domain is a cartesian product

such as Z2, we may simplify the notation. Given f : Z2 Ñ Z, we may write fpm,nq instead

of fppm,nqq, although the latter is more accurate. One may also think of this as a function

with two inputs, however, the domain is still Z2 in this context.

Say a function f : Z2 Ñ Z is defined by fpm,nq “ 6m ´ 9m. As a set, this function is

f “ tppm,nq, 6m´ 9nq : pm,nq P Z2u Ď Z2 ˆ Z. What is the image of f?

Proof. First observe that any element in fpAq is divisible by three. Indeed, 6m ´ 9n “

3p2m ´ 3nq. We show that if 3 | x, then there exist m,n such that fpm,nq “ x. Observe

that fp2, 1q “ 3, and that the function is multiplicative. Therefore if x “ 3k is a multiple

of 3, then the choice fp2k, kq “ 12k ´ 9k “ 3k “ x satisfies the condition. Hence the image

fpAq is all multiples of 3.

Definition 7.17. We denote the set of all functions from A to B by BA. That is, BA “

tf : f : AÑ Bu. In general, |BA| “ |B||A|.

7.5 Injective & Surjective Functinos

Recall the terms “one-to-one” and “onto” from calculus - these are other names for injective

and surjective functions respectively.

Definition 7.18. A function f is:

(a) injective if for all a, a1 P A, a ‰ a1 implies fpaq ‰ fpa1q.

(b) surjective if for every b P B, there is an a P A with fpaq “ b.

(c) bijective if f is both injective and surjective.

(provide pictures)

Notice that whether f is surjective or not depends on how its codomain is defined. For

example, fpxq “ x2 is surjective if f : RÑ r0,8q, but not if f : RÑ R. In short, a function

is surjective if and only if its codomain equals its image. That is, fpAq “ B.
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Remark 7.19. In general, if we wish to show a function f : A Ñ B is injective, there are

two ways to go about this. The direct approach is to suppose a, a1 P A and a ‰ a1, then

prove fpaq ‰ fpa1q. The contrapositive way (which generally is more practical) is to suppose

a, a1 P A and fpaq “ fpa1q, and prove a “ a1.

To show a function f is surjective, suppose b P B, and show there exists a P A such that

fpaq “ b.

Example 7.20. (a) Show that the function f : R ´ t0u Ñ R given by x ÞÑ 1{x ` 1 is

injective but not surjective.

Proof. To show f is injective, suppose a, a1 P R´t0u with fpaq “ fpa1q. Then 1{a`1 “

1{a1 ` 1, which implies 1{a “ 1{a1, and since a, a1 ‰ 0, we may conclude a “ a1.

To show f is not surjective, it suffices to find some b P R such that no fpaq ‰ b for all

a P R´ t0u. The element b “ 1 works, since 1{x ‰ 0 for all x P R´ t0u.

(b) On the other hand, if we set the codomain of the above function to be R ´ t1u, we

may prove that f is surjective as well. To do so, let’s take an arbitrary b P R ´ t1u,
and find an a P R´t0u such that fpaq “ b. One may verify that a “ 1{pb´ 1q satisfies

this: indeed, 1{p1{pb´ 1qq´ 1 “ b, so fp1{pb´ 1qq “ b, as desired. Hence f is injective,

surjective, and thus bijective.

When we have functions between finite sets of same cardinality, it can be easier to show a

function is bijective.

Theorem 7.21. If f : AÑ B is a function and |A| “ |B|, then f is surjective if and only if

f is injective.

Equivalently, if |A| “ |B|, then f is bijective if and only if f is either injective or surjective.

Proof. First let’s assume f is injective. Since there are n elements of A, each with distinct

images, there are n distinct images. Therefore, fpAq “ B, so f is surjective.

Next, let’s assume f is surjective. Then each of the n elements in B are the image for some

element of A. Consequently, the n elements of A have n distinct images in B, implying no

two distinct elements of A can have the same image. Hence f is one-to-one.

We now state a classic counting result, and apply it to our study of functions.

Theorem 7.22. (Pigeonhole Principle) If there are n pigeons nesting in k holes, then at

least one hole has rn
k

s pigeons.

Now consider this in terms of functions. If we have a elements in set A and need to assign

them to b elements in B, if it is the case that a ą b, then the pigeonhole principle states that

there must be two elements of A assigned to the same element in B. On the other hand, if

it is the case that b ą a, then at least one hole will go unfilled. Rigorously:
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Theorem 7.23. (Pigeonhole Principle of Functions) Suppose A and B are finite sets and

f : AÑ B is a function.

(a) If |A| ą |B| then f is not injective.

(b) If |B| ą |A| then f is not surjective.

Let’s see some applications of this.

Example 7.24. If A is a set of 10 integers between 1 and 100, then there exist two different

subsets X Ď A and Y Ď A for which the sum of elements in X equals the sum of elements

in Y .

Proof. Suppose A Ď t1, 2, . . . , 100u with |A| “ 10. Note if X Ď A, then X has no more

than 10 elements, each of which are at most 100, so the sum of elements in X is less than

100 ¨ 10 “ 1000. Consider the function

f : PpAq Ñ t0, 1, . . . , 1000u

for which fpXq sums the values of X. Since |PpAq| “ 210 “ 1024 ą 1001 “ |t0, 1, . . . , 1000u|,

the pigeonhole principle implies f is not injective. Therefore, there are two unequal sets

X, Y Ď A such that fpXq “ fpY q, as desired.

Pigeonhole principal problems usually involve showing that given some set of something,

there must be some subset that has some certain property, and the proofs usually involve

constructing the “holes” in the right way.

7.6 Composition

You may be familiar with the notion of composition already, but it is worthwhile to revisit.

Definition 7.25. Suppose f : A Ñ B and g : B Ñ C are functions where the codomain of

f is a subset of the domain of g. The composition of f and g, denoted g ˝ f : A Ñ C, is

the function with domain A and codomain C defined by pg ˝ fqpxq “ gpfpxqq.

Example 7.26. Suppose A “ ta, b, cu and B “ t1, 2, 3u. Set f : A Ñ B to be the function

f “ tpa, 1q, pb, 2q, pc, 3qu and g : B Ñ A to be the function g “ tp1, cq, p2, bq, p3, cqu. Then we

may compute:

(a) g ˝ f “ tpa, cq, pb, bq, pc, cqu

(b) f ˝ g “ tp1, 3q, p2, 2q, p3, 3qu

(c) f ˝ f and g ˝ g are not defined.

Here we note that composition is not commutative, that is g ˝ f ‰ f ˝ g. In fact, they don’t

even share domains or codomains!
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Theorem 7.27. Composition of functions is associative, that is, for three functions f, g, h

whose composition is defined,

ph ˝ gq ˝ f “ h ˝ pg ˝ fq

In particular, we may unambiguously take the composition of any finite number of functions.

Proof. To prove this, we must show that the two functions are equal for all x in the domain

of A. We compute:

pph ˝ gq ˝ fqpxq “ ph ˝ gqpfpxqq “ hpgpfpxqqq.

Similarly,

ph ˝ pg ˝ fqqpxq “ hppg ˝ fqpxqq “ hpgpfpxqqq.

Since both sides equal hpgpfpxqqq for all x in the domain of A, we may conclude the functions

are equal.

Theorem 7.28. Suppose f : AÑ B and g : B Ñ C.

(a) If both f and g are injective, then g ˝ f is injective.

(b) If both f and g are surjective, then g ˝ f is surjective.

Proof. First suppose f and g are injective. We must show that g ˝ fpxq “ g ˝ fpyq implies

x “ y for arbitrary x, y P A. We have gpfpxqq “ gpfpyqq, by injectivity of g we have that

fpxq “ fpyq, and injectivity of f implies x “ y as desired.

Now, suppose f and g are surjective. We must show that for any y P C, there is x P A such

that g ˝ fpxq “ y, or equivalently gpfpxqq “ y. Surjectivity of g implies there is some z P B

such that gpzq “ y, and surjectivity of f implies there is some x P A such that fpxq “ z.

Choosing x implies gpfpxqq “ gpzq “ y, as desired.

Corollary 7.29. Suppose f : A Ñ B and g : B Ñ C. If both f, g are bijective, g ˝ f is

bijective.

7.7 Inverse Functions

You may recall that a bijective function has an inverse function f´1 that “undoes” the effect

of f , that is, fpf´1pxqq “ f´1pfpxqq “ x. We make this notion more precise.

Definition 7.30. For a set A, the identity function on A is the function iA : A Ñ A

defined as iApxq “ x for all x P A. Equivalently iA “ tpx, xq : x P Au. It is bijective.

Definition 7.31. Given a relation R : AÑ B, the inverse relation of R, denoted R´1 is

the relation from B Ñ A defined as R´1 “ tpy, xq : px, yq P Ru. In other words, the inverse

of R is the relation R´1 obtained by interchanging the elements for every ordered pair in R.
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Example 7.32. Let f : A Ñ B, where A “ ta, b, cu, B “ t1, 2, 3u. Suppose f is the

relation f “ tpa, 2q, pb, 3q, pc, 1qu. Then f´1 “ tp2, aq, p3, bq, p1, cqu. Note that f´1 is indeed

a function, as each element of B appears exactly once as the first term of a tuple. Note f is

bijective.

Let g : A Ñ B be g “ tpa, 2q, pb, 3q, pc, 3qu. Then g´1 “ tp2, aq, p3, bq, p3, cqu. This is not a

function - 3 is mapped twice, and 1 has no mapping. Note g is not injective or surjective.

Theorem 7.33. Let f : A Ñ B be a function. Then f is bijective if and only if f´1 is a

function from B Ñ A.

Proof. Suppose f : A Ñ B is bijective. Then every element in B appears exactly once in

the 2nd coordinate of a tuple of f´1. Therefore, every element of B appears exactly once in

a 1st coordinate of f´1, implying f´1 is a function.

Now suppose f´1 is a function from B Ñ A. Since every element of B appears in a tuple in

f´1, this implies every element of B appears in a tuple in f as well, and thus f is surjective.

Additionally, since every element of B appears in a tuple in f´1 no more than once, this

implies every element of B appears in a tuple of f no more than once. Suppose fpxq “ fpyq

- since there is only one tuple containing fpxq, it must be the case that x “ y, and thus, f

is injective, as desired.

Definition 7.34. If f : A Ñ B is bijective, then its inverse is the function f´1B Ñ A.

The functions f and f´1 obey the functions f´1 ˝ f “ iA and f´1 ˝ f “ iB.

Remark 7.35. We now have two equivalent ways of proving a function is bijective - the

first is showing it is surjective and injective, and the other is constructing an inverse and

checking it is both a left inverse and right inverse.

Take caution - for a function f : AÑ B, just because a function g : B Ñ A is a left inverse,

i.e. g˝f “ iA, does not necessarily imply it is a right inverse, that is, f ˝g “ iB. For example,

let A “ t1u and B “ t1, 2u. The function f : AÑ B give by fp1q “ 1 and g : B Ñ A given

by gp1q “ gp2q “ 1 satisfy g ˝ f “ iA but f ˝ g ‰ iB.

Example 7.36. You’ve had experience with finding inverses of functions before. For exam-

ple,

(a) The function fpxq “ x3 ` 1 has an inverse. Suppose fpxq “ y, we want to find the

function f´1 satisfying f´1pyq “ x. Write y “ x3`1, simple algebra shows x “ 3
?
y ´ 1.

One may verify that indeed the function f´1pxq “ 3
?
x´ 1 is an inverse function to

fpxq “ x3 ` 1.

(b) The function g : Z2 Ñ Z2, pm,nq ÞÑ pm ` n,m ` 2nq is bijective, one may verify

this using linear algebra (row reduction). We find its inverse as follows: begin by
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writing pm,nq “ gpx, yq “ px` y, x` 2yq. We wish to find the function g´1 such that

g´1pm,nq “ px, yq So we wish to solve the system of equations:

x` y “ m, x` 2y “ n

A little linear algebra gives us that x “ 2m ´ n and y “ n ´m. Indeed, g´1px, yq “

p2x´ y, y ´ xq is the inverse function to g.

We also can compute this by seeing that g can be represented by matrix multiplication,

multiplying the matrix:
„

1 1

1 2

 „

x

y



“

„

x` y

x` 2y



.

To find the inverse, we simply need to invert the matrix - its inverse is

„

2 ´1

´1 1



,

and indeed, we see that representing these functions as matrices,

„

2 ´1

´1 1

 „

1 1

1 2

 „

x

y



“

„

x

y



and similarly for the other composition.

(c) For non-numerical functions, sometimes inverses can require a bit more tact to find. A

quick example: define the function f : PpNq Ñ PpNq given by X ÞÑ X. This function

is its own inverse!

Finally, one quick definition which will certainly be seen in future classes.

Definition 7.37. Let f : AÑ B.

(a) The image of X Ď A is the set fpXq “ tfpxq : x P Xu Ď B.

(b) The preimage of Y Ď B is the set f´1pXq “ tx P A : fpxq P Y u Ď A.

Note that a function f : A Ñ B is surjective if and only if fpAq “ B. A function defined

on a finite set is injective if and only if for every X Ď fpAq, |f´1pXq| “ |B|. Note that

if set fpAq “ C, the same function with redefined codomain, f : A Ñ C is automatically

surjective.

7.8 Well-Definedness

A note of caution - often when we define functions, we define them using rules rather than

explicitly writing out where each function is mapped. This is fairly normal, but one has to

take caution to make sure that the construction which is being used implies that each element
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in the domain sends an element to only one element in the codomain, in an unambiguous

way. We say that a function is well-defined if this occurs, and ill-defined or ambiguous

if not.

This is not the same as a function being undefined for certain values - for example, the

function fpxq “ 1{x is undefined at x “ 0, but still well-defined. We just must restrict the

function so 0 is not included in the domain. Let’s see some examples of not well-defined

functions.

Example 7.38. (a) Let A0 and A1 be sets, define A “ A0YA1, and define f : AÑ t0, 1u

as fpaq “ 0 if a P A0 and fpaq “ 1 if a P A1. If A0 X A1 “ H then f is well-defined,

but if A0 X A1 ‰ H, then f is ambiguous for elements belonging to both A0 and A1.

(b) Defining functions between differing moduli spaces in modular arithmetic can be iffy.

Consider the function f : Z{8ZÑ Z{4Z sending ras8 ÞÑ ras4. One can verify that this

is a well-defined function by checking that any integer belonging to ras8 is sent to the

same value ras4. This follows because if a ” b mod 8, or 8 | a ´ b, then 4 | a ´ b as

well, so a ” b mod 4.

However, switching things up, f : Z{4Z Ñ Z{8Z, sending ras4 ÞÑ ras8 is not well-

defined. To see an example, note that 0, 4 P r0s4, but 0 P r0s8 and 4 P r4s8. Hence,

r0s4 ÞÑ r0s8 and r4s4 ÞÑ r4s8, but since r0s4 “ r4s4, this means that the way this function

is constructed, it is not well-defined.

(c) Consider the function fpxq “ x{2. This function is well-defined, but if f is defined as

f : ZÑ Z, the function’s codomain is too small.

In general, one does not need to check for well-definedness of functions if the function is

being defined explicitly. However, when a function is either defined on a set of equivalence

classes, or is defined based on some logical rules, one must check that indeed, the function

is well-defined.

8 Cardinality, Revisited

Before, we defined the cardinality of a finite set to be the number of elements it contains,

and the cardinality of an infinite set to be “infinity” otherwise. We expand on this notion.

8.1 Numerically Equivalent Sets

Definition 8.1. Two sets A and B, either finite or infinite, are said to have same car-

dinality, written |A| “ |B|, when either A and B are both empty or there is a bijective

function f : AÑ B. We say A and B are numerically equivalence.
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Theorem 8.2. Let S be a nonempty collection of nonempty sets. A relation „ is defined

on S by A „ B if there exists a bijective function from A to B. Then R is an equivalence

relation.

Proof. Let A in S. The identity function iA : A Ñ A is bijective, so A „ A, thus „ is

reflexive.

Now suppose A „ B, so there is a bijective function f : A Ñ B. Then f´1 : B Ñ A is a

bijective function, so B „ A. Hence „ is symmetric.

Now suppose A „ B and B „ C, so there are bijective functions f : AÑ B and G : B Ñ C.

Then g ˝ f : AÑ C is bijective, so A „ C, and „ is transitive.

By the equivalence relation „, the equivalence class rAs is all sets in S having the same

cardinality as A, hence the term “numerically equivalent sets.”

We are particularly interested in sets which are numerically equivalent to N.

8.2 Denumerable Sets

Notationally for this chapter, N will not contain 0.

Definition 8.3. A set A is called denumerable or countably infinite if |A| “ |N|. In

other words, A is denumerable when there is a bijective function f : N Ñ A such that

A “ tfp1q, fp2q, fp3q, . . . u. Equivalently, A is denumerable if and only if we can list the

elements of A as distinct a1, a2, a3, . . . (where ai “ fpiq).

Say a set A is countable if it is finite or countably infinite. Otherwise, it is uncountable.

Let’s see some examples of countably infinite sets.

Theorem 8.4. Z is countably infinite.

Proof. Observe that Z can be listed as 0, 1,´1, 2,´2, . . . . Then we have a list: a1 “ 0, a2 “

1, a3 “ ´1, . . . , and the function describing this mapping is clearly injective and surjective.

Explicitly, it can be written

fpnq “
1` p´1qnp2n´ 1q

4

As a result, this example demonstrates that it is possible for two sets to have the same

cardinality when one is a proper subset of the other.

Theorem 8.5. Suppose A,B are infinite with B Ď A. If A is countable, then B is countable.

Proof. Suppose B Ď A with B infinite and A countably infinite. Since A is countably infi-

nite, we can express it as A “ ta1, a2, a3, . . . u. Our goal is to write B “ tb1, b2, . . . u.
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Let S “ ti P N : ai P Bu, that is S consists of all those positive integers that are subscripts of

the elements in A which also belong to B. Since B is infinite, so is S. First we use induction

to show B contains a countably infinite subset. Since S is a nonempty subset of N, the

well-ordering principle implies S has a least element. Let b1 “ ai1 . Let S1 “ S ´ ti1u. Since

S1 ‰ H, S1 has a least element i2. Let b2 “ ai2 , which is distinct from b1. We repeat this

process, in general suppose the distinct elements b1, b2, . . . , bk have been defined by bj “ aij
for each integer j with 1 ď j ď k, where i1 is the smallest element in S and ij is the min-

imum element in Sj´1 “ S ´ ti1, . . . , ij´1u for 2 ď j ď k. Then let ik`1 be the minimum

element of Sk “ S´ti1, i2, . . . , iku and let bk`1 “ aik`1
. It follows for each integer n ě 2, an el-

ement bn belongs to B that is distinct from b1, . . . , bn´1. Thus, the elements b1, b2, b3, ¨ ¨ ¨ P B.

Let B1 “ tb1, b2, . . . u, which is countably infinite. It is clear B1 Ď B. It remains to show

B Ď B1. Let b P B - since B Ď A it follows that b “ an for some n P N and so n P S. If

n “ i1 then b “ b1, so b P B1. Otherwise, assume n ą i1. Let S 1 consist of the positive

integers less than n that belong to S. Since n ą i1 and i1 P S, it follows that S 1 ‰ H. It is

clear that 1 ď |S 1| ď n´ 1 so S 1 is finite, so say |S 1| “ m. Then S 1 consists of the m smallest

integers of S, i.e. S 1 “ ti1, . . . , imu. The smallest integer belonging to S greater than im is

im`1 and im`1 ě n, so n “ im`1 and thus b “ an “ aim`1 . Thus b P B1 and we conclude

B “ B1.

Corollary 8.6. kN and kZ are countably infinite for any k P N.

Theorem 8.7. If A and B are countably infinite, then AˆB is countably infinite.

Proof. Write A “ ta1, a2, . . . u and B “ tb1, b2, . . . u.(draw a table) Compare the table of

AˆB shown which have a countably infinite number of rows and columns, where ai increase

by row and bi increase by columns - pai, bjq appears in the ith row and jth column. Obviously

every element of AˆB appears once. We now order the elements as follows: (draw a picture)

pa1, b1q, pa1, b2q, pa2, b1q, pa3, b1q, pa2, b2q, pa1, b3q, . . .

This is a bijective function since every element of A ˆ B occurs once. Thus A ˆ B is

denumerable.

Corollary 8.8. Q` is countably infinite.

Proof. This follows by considering Q` as NˆN with all ordered pairs pa, bq with gcdpa, bq ą 1

removed, and application of the previous two theorems. Equivalently, one may use the same

function as used in the previous proof, but with skipping over any unreduced fraction.

One must take care in the way that the bijection is created - for example, traversing by

each row will not work. However, there are many ways of traversing Q` which all result in

bijections.

Corollary 8.9. Q is countably infinite.
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Proof. Write Q “ Q`YQ´Yt0u. We can write Q` “ tq1, q2, . . . u and it is clear the function

Q` Ñ Q´ given by taking the negative of each rational is a bijection, so we may also write

Q´ “ t´q1,´q2, . . . u. Then the sequence Q “ t0, q1,´q1, q2,´q2, . . . u is a bijection, and so

Q is countably infinite.

We conclude with one final statement which will not be proven.

Theorem 8.10. The cartesian product of a countably infinite collection of countable sets is

countable.

8.3 Uncountable Sets

Let’s review a few facts of real numbers and decimal expansions. Every irrational number

has a unique nonrepeating decimal expansion which is nonrepeating. However some rational

numbers have two repeating decimal expansions, for example, 1{2 “ .50000 ¨ ¨ ¨ “ .499999 . . . .

In particular, a rational number a{b has two decimal expansions if and only if the only primes

dividing b are 2 and 5, and in particular, then one of the expansions repeats the number 0.

Recall that pa, bq “ tx P R, a ă x ă bu. We can prove any open interval of this form is

indeed uncountable by Cantor’s Diagonalization Argument, but the standard way to do so

is to prove p0, 1q is uncountable.

Theorem 8.11. p0, 1q is uncountable.

Proof. Suppose for contradiction p0, 1q is countable, hence countably infinite. Therefore

there must exist a way to write p0, 1q “ ta1, a2, . . . u with each ai distinct. Each number an
has a decimal expansion, say an “ 0.an1an2 . . . . To avoid confusion, when a number has a

nonunique decimal expansion, we choose the expansion which repeates the digit 0 from some

point on, so there is no real number an that has a decimal expansion which repeats 9 from

some point on. (draw a sequence of decimal expansions)

We show that f is not onto. Define b “ 0.b1b2b3 . . . by

bi “

#

4 aii“5

5 aii ‰ 5

Note that b ‰ ai for any i P N, because the ith decimal place is not equal. Thus b is not the

image of any element of N, so f is not onto, a contradiction.

Theorem 8.12. Let A,B be sets such that A Ď B. If A is uncountable, then B is uncount-

able.

Proof. This is directly the contrapositive of (8.5).
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Note that this theorem does not imply that A and B are numerically equivalent in this case

- just that they are uncountable.

Corollary 8.13. R is uncountable.

So we have proven that |Q| ‰ |R|! In general it should be clear that countable and uncount-

able sets cannot be numerically equivalent.

Theorem 8.14. p´π{2, π{2q and R are numerically equivalent.

Proof. One may observe that fpxq “ tanpxq is an explicit bijection between the sets.

Corollary 8.15. R is numerically equivalent to any open interval.

Proof. One may construct a linear function fpxq mapping p´π{2, π{2q to pa, bq for any a ă

b P R (that is, fp´π{2q “ a and fpπ{2q “ b). We leave the details as an exercise.

8.4 Comparing Cardinalities

Definition 8.16. A set A is said to have smaller cardinality than B, denoted |A| ă |B|, if

there is an injective function f : AÑ B, but no bijection from A to B. If we write |A| ď |B|,

then either |A| ă |B| or |A| “ |B|.

Example 8.17. The inclusion N Ñ R and the Diagonalization argument demonstrates

|N| ă |R|.

Definition 8.18. The cardinality of the set N of natural numbers is denoted ℵ0, “aleph

null”. The cardinality of R is denoted c and is called the continuum.

The continuum hypothesis is a conjecture by Georg Cantor, one of the founders of Set

Theory. It claims that there exists no set S such that

ℵ0 ă |S| ă c.

If true, it would imply that every subset of R is either countable or numerically equivalent

to R.

In 1931, Kurt Godel proved it was impossible to disprove the Continuum Hypothesis from

the axioms of set theory. However in 1963, Paul Cohen demonstrated it is also impossible to

prove the Continuum Hypothesis from these same axioms. Hence the Continuum Hypothesis

is independent of the axioms of set theory!

In general, comparing the cardinalities of sets which are known to not be countable can be

difficult. However, we do have the following result:

Theorem 8.19. If A is a set, then |A| ă |PpAq|.
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Proof. This is trivial if A is finite. Let’s consider when A is infinite. We have created

an injection A Ñ PpAq Suppose for contradiction that there exists a bijective function

f : AÑ PpAq. For each x P A, let gpxq “ Ax, where Ax Ď A. We show there is a subset of

A that is distinct from Ax for each x P A. Define B Ď A by:

B “ tx P A : x R Axu

By assumption there exists an element y P A such that B “ Ay. If y P Ay, then y R B by

the definition of B. However, if y R Ay, then according to the definition, y P B. Hence y

belongs to exactly one of B and Ay, so Ay ‰ B, a contradiction!

In particular, there is no largest set. Moreover, there is no reason to assume there is no

cardinality falling between |A| and |PpAq| for any set A.

8.5 The Schroder-Bernstein Theorem

Definition 8.20. Let f : A Ñ B be a function and D Ď A. The restriction of f to D is

the function f |D : D Ñ B for which f |Dpxq “ fpxq for all x P D. Note that if f is injective,

f |D is as well. On the other hand, if f is not injective, f |D can be - for example the function

fpxq “ x2 on R is not injective, but restricted to r0,8q it is.

If f : A Ñ B and g : C Ñ D are functions with A,C disjoint, we can define a function

h : AY C Ñ B YD by:

hpxq :

#

fpxq x P A

gpxq x P B

If f and g are surjective, then so is h, but if f and g are injective, h is not necessarily

injective. A sufficient (but not necessary) condition for injectivity is for B XD “ H.

Finally, note let B Ď A be nonempty sets and let f : A Ñ B. Since B Ď A, fpxq P A

and fpfpxqq P B. We can recursively apply this logic to define in this case, the function

f 1pxq “ fpxq and for k ą 1, fkpxq “ fpfp. . . pxqq . . . q “ fk´1pfpxqq. For example, if

f : ZÑ 2Z is defined by fpnq “ 4n, then f 1p3q “ 12, f 2p3q “ fpfp3qq “ 48.

Theorem 8.21. Let A and B be nonempty sets such that B Ď A. If there exists an injective

function from A to B, there exists a bijective function from A to B.

Proof. See book

From what we know of inqualities of real numbers, one would expect that if |A| ď |B| and

|B| ď |A|, then |A| “ |B|. This is correct, and is the result of the Schroder-Bernstein

Theorem

Theorem 8.22. If A and B are sets satisfying |A| ď |B| and |B| ď |A|, then |A| “ |B|.
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Proof. Since |A| ď |B| and |B| ď |A| there are injective functions f : AÑ B and g : B Ñ A.

Then g1 : B Ñ gpBq (the same function with restricted codomain) is a bijection. So

g´11 : gpBq Ñ B exists and is bijective too.

Since f : AÑ B and g1 : B togpBq are injective functions, it follows that g1 ˝ f : AÑ gpBq

is an injective function. Because gpBq Ď A, by the previous theorem, there exists a bijective

function h : AÑ gpBq. Thus h : AÑ gpBq and g´11 : gpBq Ñ B are bijective functions, and

therefore g´11 ˝ h : AÑ B is a bijective function as desired.

We end this discussion of infinities by stating perhaps a surprising fact.

Theorem 8.23. PpNq and R are numerically equivalent.

9 Number Theory

We will conclude the course with some more work in Modular Arithmetic and Number

Theory. [At this point, I began using a separate set of notes which are not included]
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