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2.3 Bisets

Definition 2.3.1. Let G, H be groups. Then an (H, G)-biset is a left (H x G°)-set. Equiv-
alently, an (H, G)-biset U is both a left H-set and a right G-set, such that the H-action and
the G-action commute, i.e.

(h-u)-g=nh-(u-g).

Hence we may write h - u - g or hug without ambiguity.

Remark 2.3.2. We can consider disjoint unions or products of bisets as before. If U and V'
are (H,G)-bisets, then a biset homomorphism f : U — V satisfies f(h-u-g) = h- f(u) - g.
If U is a (H,G)-biset, then the set (H x G?)\U is called the set of (H,G)-orbits on
U, denoted H\U/G. As before, the biset U is transitive if H\U/G has cardinality 1, or
equivalently, there exists (h,g) € H x G such that h-u-g = v.

Example 2.3.3 (Identity Bisets). If G is a group, then the set G is a (G, G)-biset for the left
and right actions of G on itself by multiplication. The biset is called the identity (G,G)
biset and is denoted by Idg. More generally, if H is a subgroup of G, then the set G/H
is a (G, Ng(H)/H)-biset, and H\G is a (Ng(H)/H,G)-biset. More precisely for G/H: the
action is as follows: for hH € Ng(H)/H and ¢, g2 € G,

g1+ goH - hH = g1goh H.

This is well-defined on the right: this is valid multiplication since hH = Hh, and for hy H =
hoH , we have hih = hy for some h € H. Then,

Lemma 2.3.4. 1. If L is a subgroup of H x G, then the set (H x G)/L is a transitive
(H, G)-biset for the actions defined by:

VYhe H,Y(b,a)Le (H x G)/L,Yge G, h-(b,a)L-g= (hb,g 'a)L.



2. If U is an (H, G)-biset choose a set [H\U/G] of representations of (H, G)-orbits on U.
Then there is an isomorphism of (H, G)-bisets

U= || (HxG)/L,
ue[H\U/G]

where L, = (H,G), is the stabilizer of v in H x G, i.e. the subgroup of H x G defined
by
(H,G), ={(h,9)e HxG :h-u=u-g}.

In particular, any transitive (H, G)-biset is isomorphic to (H x G)/L for some subgroup
Lof HxG.

Proof. 1. This statement is a straightforward verification.

2. This statement follows directly from Lemma 2.2.2. One must note that since U is a
(H, G)-biset, so the action of (H x G) on U is given by (h,¢g')-u = h-u-g~!, which
determines L,. Equivalently, we could write

U~ |_| (H x G°)/L,

ue[H\U/G]

where L, = {(h,g) e Hx G :u-h-g = h}.
[

Example 2.3.5. Let f : G — H be a group homomorphism. Then the set H has a (H, G)-
biset structure given by

hek-g=hkf(g).
This biset is isomorphic to (H x G)/A;(G), where A(G) is the graph of f,
Ap(G) ={(f(9).9) : g€ G}.
The bijection is given by ¢ : k — (k, 1)A(G). One verifies the map satisfies the right action:
ok - g) = ¢(kf(g)) = (kf(9). DAF(G) = (kg7 )AHG) = (k, 1)Af(G) - g = (k) - g.
The map has inverse
b (hy9)As(G) = (hf(g7"), DAHG) = hf(g™)

Definition 2.3.6. Let G and H be groups. If U is an (H, G)-biset, then the opposite biset
U is the (G, H)-biset equal to U as a set, with actions defined by

Vge GoueUhe H,g-u-h (in U?) = hlug™" (in U).

Example 2.3.7. If H is a subgroup of G, then the map xH + Hx~! is an isomorphism of
(G, Ng(H)/H)-bisets from G/H to (H\G).



Example 2.3.8 (Opposite Subgroup). If G and H are groups, and L < H x G, then the
opposite subgroup L° < G x H defined by

L°={(g,h) e Gx H:(h,g) € L}.
With this notation, there is an isomorphism of (G, H)-bisets
((Hx@G)/L)" = (G x H)/L*, (h,g)L — (g,h)L°
(one must verify this map is well-defined as a map of (G, H)-bisets).

Remark 2.3.9 (Elementary Bisets). Let G be a group. The following bisets are fundamen-
tal:

o If H < G, the set G is an (H,G)-biset in the obvious way. It is denoted by Res%,
where Res means restriction.

e Similarly, G is a (G, H)-biset in the obvious way. It is denoted by Ind%, where Ind
means induction.

e If N < G and H = G/N, the set H is a (G, H)-biset, for the right action of H by
multiplication, and the left action of G by projection to H, then left multiplication. It
is denoted by Inf%, where Ind means induction.

e Similarly, H is a (H, G)-biset in the same way as before. It is denoted by Def%, where
Def means deflation.

e If f: G — H is a group isomorphism, then the set H is a (H,G)-biset, for the left
action of H by multiplication, and the right action of GG given by taking the image in f,
then multiplying on the right in H. It is denoted by Iso(f) of IsoZ if the isomorphism
f is clear from context.



Composition of Bisets

Definition 2.3.11. Let G, H, K be groups, and let U be a (H,G)-biset and V' a (K, H)-
biset. Define the composition of V' and U to be the set of H-orbits on the right H-action
on V' x U, where the right action of H is given by

(v,u) -h=(v-hh~ " u).

Denote this set by V' x g U, and denote the H-orbit of (v,u) €V x U by (v,gu) e V xg U.
V xy U is a (K, G)-biset for the actions defined by

k-(v,gu)-g=(k-v,g,u-g).

We will verify well-definedness of this action. Let (vi,p ,u1) = (vo,g ug) € (V x5 U), and let
ke K,g e G. There exists h € H such that

(vi,u1) - h = (vy - h, bt ug) = (v, up),
so vy -h =1wvy and h~' - u; = uy. Then
(k-vi,ur-g)=(k-vy-h,h ' ug-g) = (k-vi,us-g)-h,
and hence (k- vy,guy - g) = (k- vy, us - g) as desired.

Definition 2.3.12. Let G be a group. A section (7,5) of G is a pair of subgroups of G
such that S < T. The associated subquotient of G is the factor group 7/S.

Example 2.3.13 (Defres and Indinf). Let G be a group and let (7',S) be a section of G (so
S < T < G). Then there is an isomorphism of (G,T/S)-bisets:

Ind$ xTInfg/S = G/s
sending (g,7 tS) to gtS. For this reason, the (G, T/S)-biset G/S will be denoted by Indinf%s.
Let’s verify this! Recall Ind$ is G as a (G, T')-biset, and Inf:f/s is T'/S viewed as a (T, S)-biset,
so the definition makes sense. The map is well-defined: since every element of (g,7tS) is of
the form (gt’, (¢')~'tS) for some t’ € T', any choice of representative is sent to gt'(t')~'tS = gtS
via the isomorphism. Moreover, the inverse map is given by ¢S — (g, 1.5), and it is straight-
forward to see that these maps are indeed inverse (since (g,rtS) = (gt,r 1.5)). Finally, one
verifies that these are (G, T/S)-equivariant maps.
Similarly, there is an isomorphism of (7'/S, G)-bisets

Defg/s x7Res¢ = S\G,

sending (tS,r g) to Stg. For this reason, the (T'/S, G)-biset S\G will be denoted by Defres%s.
The verification of this is similar to before.



Proposition 2.3.14. Let G, H, K, L be groups.

1. If U is an (H, G)-biset, if V is a (K, H)-biset, and W is an (L, K)-biset, then there is
a canonical isomorphism of (L, G)-bisets

WXK(V XHU)E’(W XKV) XHU
given by (w4 (v, ,u)) — ((w,x ),z u)) for all (w,v,u) e W x V x U.

2. If U is an (H, G)-biset and V' is a (K, H)-biset, then there is a canonical isomorphism
of (G, K)-bisets
(V xg U)? = U% xy V?

given by (v,5 ) — (11 v).

3. If U and U’ are (H, G)-bisets and if V and V" are (K, H)-bisets, then there are canonical
isomorphisms of (K, G)-bisets

Vxg(UuU)=(VxgU)u(VxyglU)
(VuV)xgU=(VxygU)u (V' xyU).

The first is defined by
(0.1 ) o {(U,Hu) e(VxylU) uelU

(v,gu)e (V xgU') uel
and the second follows similarly.
4. If U is an (H, G)-biset, then there are canonical (H, G)-biset isomorphisms
ldy xyU > U < U x¢ldg
given by (h,gu) — h-u and (u,gg) — u- g for all (h,u,g) e Hx U x G.

The proof of this proposition is fairly straightforward, it’s mostly just verifying that the
defined maps are equivariant. (Note I added in the definition of the map in part 3.)

Remark 2.3.15. Assertion 1 allows for the unambiguous notation of W xx V x U and

(w,x Vg, 1).
Definition 2.3.16. Let G, H be groups and U a (H, G)-biset.
1. If L < H, and u € U, define
L":={geG:3ell-u=u-g} =<G.

Then L" is a subgroup of GG. In particular, 1* is the stabilizer of u in G, considering
U as a right G-set.



2. If K is a subgroup of GG, then set
“K={heH:3ke K,h-u=u-k} < H.

Then “K is a subgroup of H. In particular, “1 is the stabilizer of v in H, considering
U as a left H-set.

Let’s verify that L" < G, the other side follows similarly. If g1, g2 € L*, then there exists
l,ls € L such that l; -u=wu-gy,lo-u=u-gs. First, ll_1 Sy = u~g1_1, so g1 € L*. Next note
(I -u) - go = (u-g1) - g2, but by commutativity of bisets, we have:

(lh-u) go=(u-g1) g
l1'(u'92)=U'9192
Iy (la-u) =u-gi1g

Lily-u=u-g192
as desired.

Remark 2.3.17. If G is a group, if U = Idg, and H < G, then H* = u='Hu, for u € G, and
“H = uHu™'. So the above notation is a generalization of the usual notation of conjugation
of subgroups.

Let’s verify this for H*. H* ={g€ G :3h € H,h-u = u- g}, or equivalently, h"* = {g € G :
dh e H,g = u'hu}, which indeed is precisely u ! Hu.

Proposition 2.3.18. Let G, H be groups and let U be a (H, G)-biset.

1. If w e U and (T, 5) is a section of H, then (T, S") is a section of G. If (Y, X) is a
section of G, then (*Y,"X) is a section of H.

2. In particular, if v € U, then 1* < H" and “1 < "G, and there is a canonical group
isomorphism

~

e H'/1" 5 G,
defined by ¢,(g1*) = h"1, where g € H* and h € H is such that h-u =u-g.

3. The stabilizer (H,G), of v in H x G is equal to the set of pairs (h, g) in “G x H" such
that h*1 = ,(g1").

4. The group "1 x 1* is a normal subgroup of (H,G), and there are canonical group
isomorphisms

“G/"1 = (H,G)u/(“1 x 1) = H"/1"
defined by (h, g)(“1 x 1*) — h*1 and (h, g)(*1 x 1%) — g1*.



Proof. 1. Let u e U and (7,S5) be a section of H. It is immediate from the definitions
that S* < T" < G. It remains to show normality. Now if g € T" and ¢’ € S“, then
there exist t € T and s € S such that t -u =u-¢g and s-u = u-¢’. We wish to show

gg'g' € S. We compute:

-1

(w-9)g'g " =(t-u-g)g ' =t(s-u-g ") =ts(t™" - u),

hence by definition, gg'g~* € S* since tst~! € S because S < T. Thus, S* < T*. The
other half of (1) is similar to prove.

2. Assertion 1 implies 1" < H", as (H,1) is clearly a section of G. Now if g € H* and
h € H satisfy h-u = u - g, then h € “G by definition. Let h' € H be another element
satisfying b’ -u = u-g = h-u. Then, we see (h™*h/) - u = u, so h’ € h*1 (recalling that
“1 is simply the stabilizer). Thus, the map

¢y H* - "G/*1,g— h"1 where h-u=u-g

is well defined. We check it is a group homomorphism: if g1, go € H, then ¢,(g1)cy(g2) =
hiho"1, where hy -u = u-¢g; and hy - u = u - go. It follows from prior computations
(2316) that hth U = U- g1g2, SO Cu(glgg) = h1h2u1, as desired.

Moreover ¢, is surjective, since for any h € “G, there exists a g€ G with h-u=wu-g
by definition of “G. Finally, the kernel of ¢, is precisely 1*: ¢,(g) = 1“1 if and only if
u = u - g if and only if g stabilizes u if and only if g € 1%, so the induced isomorphism
is exactly as desired.

3. Recall that H x G acts on U by h-u-g = hug~'. Therefore, the stabilizer is precisely
{(h,g) e HxG : h-u = u-g}. On the other hand, h"1 = ¢,(¢g1") if and only if
h-u=u-g, as desired.

4. It follows from the definition of (H,G), and (2) that “1 x 1" is normal in (H,G), <
H x G. The map (h,g)(*1 x 1*) — h*1 is well-defined: suppose (hy,g1)(*1 x 1*) =
(B2, g2) ("1 x 1%), then (hihy' g1g5") € (“1 x 1%). Hence hi“1 = hy"l, as desired.
It is clear the map is a group homomorphism, and the map has inverse defined by
h*1 — (h,g)(*1 x 1*), where ¢,(g1") = h*1 (checking this is well-defined is similar to
before). Thus, we have the given isomorphism on the left. The isomorphism on the
right follows similarly.

O



Day 2
Definition 2.3.19. Let G, H, K be groups. If L < H x G, and if M < K x H, set
M«L={(k,g)e KxG:3heH, (k,h)e M and (h,g) € L}.

M = L is a subgroup of K x G - this is a straightforward verification.

Lemma 2.3.20. Let G, H, K be groups, let U be a (H, G)-biset and V" a (K, H)-biset. Then
if ue U and v € V, the stabilizer of (v,5u) in K x G is equal to

(K, Q) gy = (K, H)y * (H,G)y.

Proof. Suppose (k,g) € (K,G)@ ,4u), that is, it satisfies k& - (v,gyu) = (v,gu)-g. Then
(kv,gu) = (v,gug),, so there ex1sts some h € H satisfying (kv,gyu) = (v,gug) - h =
(vh,; hug), so kv = vh and hu = ug. So (k,h) € (K,H), and (h,g) € (H,G),, and
thus (k,g) € (K, H), = (H,G),.

Conversely, if (k,g) € (K,H), = (H,G),, so there exists h € H satisfying kv = vh and
hu = ug. Thus,

k(U7H U) = (kU>H 'LL) = (UhaH u) = (UaH Ug) = (vaH U)g,

and so (k, g) € (K, G)w,,u) as desired. O
Definition 2.3.21. Let G, H be groups and L < H x (. Define:

p(L)={he H:3g€ G, (h,g) € L}

p2(L) ={geG:3g€G, (hg) € L}

ki(L)={he H:(h,1)e L}

ko(L) ={9eG:(1,9)€ L}

q(L) = L/(k:(L) x k(L))

With this notation, the stabilizer in H x G of the element u = (1, 1)L of the biset (H x G)/L
is obviously the group L.
The group H" as defined previously is equal to the projection po(L) of L on G: H" := {g €
G:3he H, h-(1,1)L = (1,1)L - g}, and the equality only holds when (h, g) € L (remember
(1,1)L-g = (1,¢g7)L). Similarly “G = p,(L).
The stabilizer “1 of w in H is the group k(L) (this follows similarly as before) and the

stabilizer 1* of u in G is the group ko(L).
The isomorphism ¢, from Prop (2.3.18) is the map:

po(L)/ka(L) — py(L)/ki (L),  ghka(L) — hky (L) with (h,g) € L.

Prop (2.3.18.4) implies (k1(L) x ko(L)) < L, and there are canonical group isomorphisms:
p1(L)/k1(L) = q(L) = pa(L)/k2(L).
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Lemma 2.3.22. Let G, H, K be groups. Let L< H xGand M < K x H.

1. There are exact sequences of groups:
1 — k(M) x ko(L) S ML (P2(M) mpl(L))/(kz(M) a /ﬁ(L)) —1

1 — ko(L) = ko(M « L) — (ko(M) " p1(L))/(ko(M) M k(L)) — 1

2. There are inclusions of subgroups

Proof. 1. First note that ki (M) x ko(L) < M = L, since any h € ki (M) satisfies (h,1) € M
and g € ko(L) satisfies (1,g) € L. We set i to be the inclusion, it is obviously injective.

Let (k,g) € M = L, so there exists h € H such that (k,h) € M and (h,g) € L.
Then, h € po(M) and h € p(L), and thus h € po(M) n pi(L). Now suppose b’ € H
also satisfies (k,h/) € M and (I,g) € L. then (1,h7'h') € M and (h™'W,1) € L,
so h™'h' € ky(M) and h™'hW € ki(L), and hence h™'h/ € ko(M) n ky(L). There-
fore, the map 6 : (k,g) — h(ko(M) N k(L)) is a well-defined map from M = L to
(p2(M) N pi(L))/(k2(M) A ki(L)). It is straightforward to check it is a group homo-
morphism.

This morphism is surjective: if h € po(M) n p1(L), then there exists a k € K for
which (k,h) € M and there exists g € G such that (h,g) € L. So (k,g) € M = L, and
0(k,g) = h(ka(M) O kr(L)).

We next check exactness. If k € k(M) and g € ko(L), then by definition (k,1) € M
and (1,9) € L. So 0(k, g) = 1(ko(M) nk1(L)), ie. ki(M) x ks(L) < ker 6. Conversely,
suppose (k,g) € kerf. Then there exists h € ko(M) n ki(L) for which (k,h) € M
and (h,g) € L. Since h € ky(M), (1,h) € M, and (k,1) = (k,h)(1,h)™' € M, so
k € ki(M). Similarly, (h,1) € L and (1,g) = (h,g)(h,1)"* € L, so g € ky(L). Thus,
(k,g) € k1 (M) x ko(L), and we conclude that ker6 = ki (M) x ko(L). Thus, the first
sequence is exact.

Now an element k € K is in ky(M = L) if and only if there exists h € H for which
(k,h) € M and (h,1) € L. In this case, h € po(M) n ky(L). Therefore, the image
of the group ki(M = L) x 1 by the morphism 6 defined above is precisely (pg(M ) N



ki(L))/(ka(M) " ki (L)). Moreover, its intersection with the kernel k; (M) x ka(L) of 8
is k1 (M) x 1. This is sufficient to define the second exact sequence. The third follows
similarly.

2. It is obvious that k(M = L) < py (M = L) from the definitions. Now if k € k1 (M), then
(k,1) e M and (1,1) € L, so k € ky(M = L). Finally, if k € p;(M = L), then there exists
h € H,g € G for which (k,h) € M and (h,g) € L, so in particular, k € p;(M). The

second line follows similarly.
O

Remark 2.3.23 (Factorization of Transitive Bisets). If G, H are groups, then by Lemma
(2.3.4), any (H,G)-biset is a disjoint union of transitive (H,G)-bisets, and a transitive
(H, G)-biset is isomorphic to (H x G)/L for some L < H x G (recall L is the stabilizer
of some ue U in H x G).

Lemma 2.3.24 (Mackey formula for bisets). Let G, H, K be groups. If L < H x G and
M < K x H, then there is an isomorphism of (K, G)-bisets

(K x H)/M) xg ((H x G)/L) =~ | ] (K x G)/(M +®™VL),
he[p2(M)\H /p1(L)]

where [po(M)\H /p1(L)] is a set of representatives of double cosets.
Proof. Set V := (K x H)/M and U = (H x G)/L. We verify that the map:
Qﬁ : K((k7 h)MaH (hlu g)L)G — p2<M>(h_1h/)p1<L)

is a bijection of biset orbits between K\(V x gy U)/G — po( M)\H /p1(L).

First to verify the map is well-defined, we must check two things, first that the choice of
representative of the V' x gy U term does not matter, and second, that two elements in the
same (K, G)-orbit are sent to the same orbit. First note if

((/fh hi) M, (hllvgl)L) = ((k2>h2)M7H (h,2792)L);

then there exists h € H for which

((k1, ha)M, (hy, g1)L) - b= ([(k1, h))M] - b h™" - [(hy, 1) L])
((kx, k™ hy) M, (bR, g1) L)

(<k27 hQ)Ma (h,27 gQ)L)

so h™thy = hy and h™'h) = h%, and it is a quick check from there that ¢ is independent of
choice of representative in V' x g U. Moreover, it is clear that any two elements in the same
orbit are sent to the same orbit, i.e. ¢ is invariant with respect to the left K and right G
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actions, since the K and G actions do not affect the H-terms.

To see that the map is a bijection, the inverse map is given by ¢! : po( M)\H /pi(L) —
K\(V xg U)/G, given by

p2(M)hpy (L) — K ((1,1)M,y (h,1)L)G.

First to check that the map is well-defined we check that if A; and ho live in the same
orbit, then they are sent to the same orbit. If po(M)hipi(L) = pa(M)hepi(L), there exist
har € p2(M), hy, € p1(L) such that hy = hyhohy, and (hy,g) € L and (k, hys) € M for some
ke K,ge G. Then

p2(M)hipi (L) — K ((1,1)M,5 (hy,1)L)G = K((k™", hy; )M, (hahy, g)L)G
= K((k™", hy )M - by} g har(hahr, 9)L)G
= K((k~",1)M,y (harhahy, 9)L)G
= ((L 1)M>H (h27 1)L)G <« pz(M)hﬂ?l(L)

Thus the map is well-defined. Finally, it is straightforward to see that these are indeed
inverse maps, so we first conclude that we have an isomorphism of biset orbits.

Now, we have from (2.3.4) a isomorphism of (K, G)-bisets:

(K < H)/M) xuq (HxG)/L)= ||  (KxG)/KG).,
2e[K\(Vx 1 U)/G]

however by the isomorphism we may rewrite this as:

(K x H)/M) xg ((H x G)/L) =~ || (K x G)/(K,G) g1

u€[p2(M)\H /p1(L)]
Finally, we must compute (K, G)s-1(y), i.e. the stabilizer of ((1, )M,y (h, 1)L) in K x G.
It is clear that M is the stabilizer of (1,1)M. Moreover, it straightforward to verify
that VL = (h,1)L(h~',1) is the stabilizer of (h,1)L, so finally by (2.3.20) we conclude
(K,G)p-1() = M = "D L and the result follows.
The book calls this verification “easy to check.” Ha. Ha. O]
Lemma 2.3.25 (Goursat Lemma). Let G, H be groups.

1. If (D,C) is a section of H and (B, A) is a section of G such that there exists a group
isomorphism f: B/A — D/C then

L(D,C),f,(B,A) = {(hag) eHxG:he Dag € Bv hC = f(gA)}

is a subgroup of H x G.
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2. Conversely, if L is a subgroup of H x G, then there exists a unique section (D, C) of
H, a unique section (B, A) of GG, and a unique group isomorphism f : B/A — D/C
such that L = L(D,C’),f,(B,A)'

Proof. 1. This is an easy verification, all that is required to check is that the subgroup is
indeed a subgroup.

2. We assert that the choices:
D = pl(L)’ B = pQ(L)’

C=Ik(L), A=kL),

and f : B/A — D/C determined by f(bA) = dC when (d,b) € L satisfy L =
Lp,c)5,(B,4) and are unique. First, it follows that these choices form sections of H
and G, with isomorphic associated subquotients from (2.3.18) (recall that u = (1,1)L),
and moreover, the map f corresponds exactly to the map ¢, in (2.3.18.3), so it is an
isomorphism. They correspond since (d,b) € L if and only if d- (1,1)L = (1,1)L - b.
Now it is clear from definitions that Lp c) f(,a) = L.

It follows that this choice is unique, since p1(Lp,cy,7,8,4)) = D, p2(L(p,c),1.(B,4)) = B,
et cetera. So if we have L = L(p ) f,4) = L cr)p (m,a, it immediately follows
that A= A’, B = B’, and so on.

[

The next result in some sense allows us to consider the 5 elementary bisets as “essential,”
as in, every biset (H x G)/L can be decomposed as a composition of those 5 bisets.

Theorem 2.3.26. Let G and H be groups. If L < H x G, let (D,C) and (B, A) be
sections of H, G respectively and let f be the group isomorphism B/A = D/C such that
L = Lpc),t(B,4- Then there is an isomorphism of (H, GG)-bisets:

(H x G)/L =~ Ind® xDInfg/C X pjcIso(f) X p/a Defg/A x g Res$

Proof. Define A = (H x G)/L and let I" denote the right-hand side of the proposed isomor-
phism. Define the map ¢ : A — I" by

¢ :(h,g)L— (h,pC,p/c C.p/a A, g9 )
(note that the middle terms are all identity cosets) and ¢ : I' — A by

w : <h>D > dC:D/C ) dlca B/A7 bAaB g) — (hddl7 971671>L7

12



for he H,d,d' € D,be B,g € G. First we verify that these maps are well defined: suppose
(h,g) € H x G and (d,b) € L. Note f satisfies f(bA) = dC by the previous lemma. Thus

hd,p C,pjc Cpja Apb~'g™")

h.p dC,pjc Cpja Ab™ 5 g7 ")

= (h,p C(dC),D/C NONI (bilA)A,B gil)
h,p Copje (dC)C(bA) ™ pa Apg™")

go((hd, gb)L) =

o~ o~ o~

However, since f(bA) = dC, we see that (dC)C(bA)~! = C € Iso(f), and hence, ¢ is indeed
well-defined. Similarly, we check 1 is well-defined. Let x € D,yC € D/C,zA € B/A,y €
f(zA),t € B. We verify that the image of ¢ of the element

E = (hz,px'dCy,pjcy 'd'Cy' ,5a 2z 'bAt, t ' g) €T

should be equal to ¢(h,p,dC,p/c,d'C,p/a,bA,p g). We compute:

W(E) = (hax™dyy~'d'y, g~ tt ™07 2) L
— (hdd'y', g b5 L
= (hdd', g~ 'b" )L

The final line comes from the fact that (v, z) € L, since f(zA) = y'C, implying (v, z) €
Lp,c).5(B,4a = L. Thus both maps are indeed well-defined. It is straightforward to check
that these maps are (H, G)-equivariant, so they are indeed maps of bisets. Finally, we check
that they are inverse. It is obvious that ¢ o o = Id,. We compute:

@o((h,p,dC,pjcd'C,p/abA5g)) = @((hdd', g 'b~")L) = (hdd',p C,pc C,p/a A, bg)

= (h7D dd/C7D/C CuB/A A<bA)7B g)
= (h,p (dC)(d'C),pjc C,ja bA,B g)
= (

h,pdC,pjcd'C,pjabA,p g)
as desired. O

In short, any transitive (H, G)-biset can be uniquely realized as the composition of these 5
fundamental bisets.

13



Day 3

2.5 The Burnside Ring (cont.)

First recall we have a construction: if G is a group and X is a G-set, we construct the
(G, G)-biset X by setting it to be the set G x X with biset structure given by

a- (gvm) b= (agbv bilx)

Let us recall the maps given in (2.5.10). Let G, H be groups and U a (H, G)-biset. If X is
a H-set, then:

aux X xgU—Uxg (U xg X)
((h, x),n u) — (hu,g (1, (u,g x)))
is well-defined. Additionally, if Y is a G-set then
Buy : U/?G/Y S UxagY xgU®
(h, (u,cy)) = (hu,g (1,9).¢u)

is well defined. If U is left-free then «, 5 are both injective, and if U is left-transitive then
a, B are both surjective, regardless of X and Y.

Corollary 2.5.1. Let G be a group and let H < G.

1. Let X be a G-set. Then there is an isomorphism of (G, H)-bisets

X xgInd% = Ind% x zRes§, X

and an isomorphism of (H, G)-bisets

Res% x X = Res? X xy Res$

2. Let Y be an H-set. Then there is an isomorphism of (G, GG)-bisets

Ind% xzY x gz Res$ =~ Ind§ Y

Proof. Note that Res% X refers to the left G-set Res§ x X and Ind% Y refers to the left
G-set Ind$ x Y.

The first isomorphism in part 1 and the isomorphism in part 2 follow from the previous
proposition, by switching G and H and letting U be the (G, H)-biset Ind%. Recall Ind$
is the set G itself. It is obvious that Indfl is left-free and left-transitive, so a and (3 are
isomorphisms. Moreover, it is clear that (Ind%)? = Res%. Now, the first isomorphism in
part 1 follows via the map a and part 2 follows from the map S.

14



Now, note that it is clear that given bisets A, B, A =~ B if and only if A% =~ B°. Using
this fact, the second isomorphism in part 1 follows from the first isomorphism, the fact that
(V x5 U)? = U% x5 V for compatible bisets U, V', and the observation that X =~ X
Most of these facts are clear or have been proven before, but the last isomorphism needs
verifying. We construct a biset map ¢ : X — X by (g,z) — (97!, gx). We verify that this
map is (G, G)-equivariant:

This map has inverse ¢~ : X% — X also given by (g, z) — (g7, gx). Equivariance follows
similarly as before, and it is straightforward to compute that these maps are inverse. Thus
the bisets are isomorphic, as desired. O

Corollary 2.5.2. Let G be a group.

1. Let N be a normal subgroup of GG, and X be a (G/N)-set. Then there is an isomorphism
of (G/N, G)-bisets

X XG/N Defg/N ~ Defg/N xGInfg/NX,

and an isomorphism of (G, G/N)-bisets

Infg/N XG’/NX = Infg/NX Xa Infg/N

2. Let N be a normal subgroup of G and Y be a G-set. Then there is an isomorphism of

(G/N,G/N)-bisets

Defd v x¢Y x ¢ Infgy = Defg v Y

Proof. The proof follows the same as the previous one, now using the assignment H = G/N
and U = Defg/N. O

We conclude the section by looking at a proposition which considers the case when G and
H have coprime order. We first revisit a necessary fact:

Lemma 2.5.3. Let G be a group and [sg] a set of representatives of conjugacy classes of
subgroups of G and H. Then B(G) is a free abelian group with basis B = {[G/S] : S € [s¢]}.
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Proof. First, recall from (2.2.2) that every G-set X can be written (up to isomorphism) as

X= || ax(X)G/K

Kelsc]

where ax(X) € N. Therefore, B is a spanning set of B(G). It remains to show B is linearly
independent. Let us suppose we have a relation

0= > as[G/S]

Selsa]

with each ag € Z. Denote [sg]™ to be the subset of S € [sg] with ag > 0 and [sg]™ to be
the subset with ag < 0. If we can show these sets are empty, we are done.
We can rearrange terms so all coefficients are positive as follows:

Z as|G/S] = Z (—ar)[G/T]

Se[sa]t Te[sc]™

Now each sum is the image of some G-set in B(G) as follows:

X= 1] asG/S. Y= || (-ar)G/T.

Se[sq]+ Te[sa]~

Since their images in B(G) are equal, X =~ Y. Now, suppose for contradiction that [sg]"
or [sg]™ is nonempty. Then, consider the poset of [s¢]T U [sg]™ ordered by inclusion up
to conjugation. Since these sets are finite, some maximal element H must exist. Suppose
without loss of generality H € [sg]T, then |X#| = ag[G : H] by maximality. However, by
(2.4.5), then |YH| = ag[G : H] > 0. Since H € [sg]™, H ¢ [sc]~, but the only sets in B
fixed by H are [G/H'] with H < H’, contradicting maximality. Thus [s¢]" = [s¢]” = O,
as desired. O

Proposition 2.5.4. Let G, H be finite groups.

1. If X is a G-set and Y is an H-set, then X x Y is a (G x H)-set with action defined
componentwise. The correspondence (X,Y) — X x Y induces a bilinear map B(G) x
B(H) — B(G x H) and hence a homomorphism

71 B(G) ®z B(H) — B(G x H)

which is an injective ring homomorphism preserving identity elements. If G and H
have coprime order, this map is an isomorphism.

2. f Uis a (G,G)-biset and V is an (H, H)-biset, then U x V is a (G x H,G x H)-biset
for the structure given again by componentwise multiplication, i.e.

(g,h) - (w,0) - (¢, 1) = (gug', huh').
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The correspondence (U, V) — U x V induces a bilinear map B(G,G) x B(H,H) —
B(G x H,G x H), hence a linear map

B(G,G)®z B(H,H) — B(G x H,G x H)

which is an injective ring homomorphism preserving identity elements. If G and H
have coprime orders, then this map is an isomorphism.

Proof. 1. The correspondence 7(X,Y) — X xY induces an obvious map B(G)x B(H) —
B(G x H) which is bilinear, since (X; 1 Xs) xY = (X7 xY) u (Xe x Y), and similarly
in the second argument. Thus by the universal property of tensor products, a linear
map 7 : B(G) ®; B(H) — B(G x H) is induced. We verify that = respects the
multiplicative structure: we must show that if X, X’ are G-sets and Y, Y’ are H-sets,
then 7(X,Y) x #(X',Y’) = 7((X x X'), (Y x Y”)). This follows since

(X xY)x (X'xY' )= (X xX')x (Y xY')

is an obvious isomorphism of (G x H)-sets, so their images in the induced map are
equal. Hence 7 is a ring homomorphism. Finally, 7 is unital, since if X is a G-set of
cardinality 1 and Y is a H-set of cardinality 1, X x Y is a (G x H)-set of cardinality
1.

Let [sg] and [sg] denote sets of representatives of conjugacy classes of subgroups of
G and H respectively. Then B(G) is free abelian with basis {[G/S] : S € [s¢]}, and
B(H) is free abelian with basis {[H/T] : T € [sg]}. Then, B(G) ®z B(H) is free
abelian with basis B = {[G/S|® [H/T] : (S,T) € [sc] % [su]}-

It is clear that 7([G/S]®[H/T]) = [(G x H)/(S x T)]. Moreover, the subgroups S x T
lie in different conjugacy classes of subgroups of G x H, where (S,T) € [s¢] % [sg], so
m(B) is a subset of a Z-basis of B(G x H). Thus 7 is injective.

Recall if G, H are groups, and L < G x H, we defined:

pi(L)={he H:3geG, (h,g)e L}
po(L) ={geG:39€q, (h,g) € L}
ki(L)={he H:(h/1)e L}
ka(L) ={geG:(1,9) € L}
q(L) = L/(k1(L) x k2(L))

Now if G, H have coprime orders and L < G x H, then ¢(L) = 1, since ¢(L)

p1(L)/k1(L) = po(L)/kao(L). From this it is clear to see that L = ki(L) x ko(L) =
pl(L) x pa(L). Hence, if L < G x H, then L = SxT for some subgroups S < G,T < H.
Since a Z-basis of B(Gx H)is B' = {{Gx H/L] : L € [sgxu]}, it follows that 7(B) = B’
and hence 7 is surjective, and therefore an isomorphism.

lle
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2. Set Go = G x GP? and Hy = H x H°?. Part 1 gives a linear map:
7 B(G2) ®z B(Hs) — B(G2 x Hy),

and Gy x Hy = (G x H)y = (G x H) x (G x H)°?. Composing this gives a map
B(G1) ®z B(Hy) — B((G x H),). It follows from the definition of bisets that we may
identify this map with the map

o : B(G,G) @, B(H, H) — B(G x H,G x H)
since B(G2) = B(G, G) and so on. It follows from part 1 that 7 is injective, and an

isomorphism if G and H have coprime orders.

It remains to verify that ms is a ring homomorphism under biset multiplication. We
wish to show that if U, U" are (G, G)-bisets and V, V' are (H, H)-bisets, then (U x ¢
U, VxgV')=xnUV)w(U',V"). However, there is an isomorphism of (G'x H, G x H)-
bisets given by:

(U xgU ) x (Vxg V)= (UxV)xgxu (U x V')
((U7G U,/), (UvH U/)) — ((U,, U)aGXH (Ul, U/))
and multiplicity of my follows. Finally it is obvious that the map sends identity bisets

to identity bisets.
O

3.1 The Biset Category of Finite Groups

Definition 3.1.1. The biset category C of finite groups is the category defined as follows:
e The objects are finite groups.
e If G and H are finite groups, Hom¢(G,H) = B(H, G).

e If G, H, K are finite groups, and u € Hom¢(G, H) and v € Home(H, K), then v ou :=

UV XgU.
e For any finite group G, the identity morphism of G in C is [Idg].

Remark 3.1.2. It follows that C is preadditive (in the sense of MacLane) - the morphism
sets are abelian groups and composition is bilinear.

If G and H are finite groups, then any morphism from G to H in C is a linear combination
with integral coefficients of morphism of the form [(H x G)/L] where L < H x G. From
(2.3.26) any such morphism factors as follows:

e Resg B Defg/A B/A Iso(f) D/C Infg/c D Indg H
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In other words C is generated as a preadditive category by the five types of morphisms above,
associated to elementary bisets.

Now let *C be the preadditive category whose objects are finite groups and morphisms are
Z-generated by elementary morphisms,

e *Res$ : G — H

e *Ind},: H - G

o *Inf& Gy G/IN -G

. DefG/N G — G/N

e “Iso(¢):G— G forp:G— G

These morphisms are subject to a list of relations given in (1 ) 3) of the book. Some examples

1.
are relations dictating composition (i.e. Res% o Rest Res%), identity morphisms (i.e.
Res$ = Idg), and commutation (i.e. the Mackey formula).
One may verify that the correspondence © : *C — C given by sending each group to itself
and removing *’s on the elementary morphisms is a functor. Conversely, there is a unique
morphism ¥ : C — *C which is the identity on objects, and sends a morphism G — H

defined by a transitive biset (H x G)/L to the morphism
*Ind? o Infg/c o*Iso(¢) o * Defh Ba© * Res$

where D = py(L),C = ky1(L),B = pa(L), A = ko(L), and ¢ : B/A — D/C' is the canonical
isomorphism from before. One may show this morphism is unique up to conjugation by L
so W is well defined. It is (according to the book) a tedious but straightforward task to
show that W is a functor, and equivalent to checking that any composition of elementary
morphisms in *C is a sum of morphisms as above.

Then it is clear that ©® and ¥ are mutual inverse equivalence of categories. In other words,
the elementary morphisms along with the relations presented in 1.1.3 form a presentation
of the biset category C.

Remark 3.1.3. Lemma (2.4.11) shows that there is a functor from the biset category to
the opposite category which maps any object to itself and any morphism u € Hom¢(G, H) =
B(H,QG) to u”? € B(G,H) = Homeor (G, H). It is obviously an equivalence of categories (in
fact, an isomorphism).

It is natural to consider other coefficient rings instead of integers:

Definition 3.1.4. Let R be a commutative ring with identity. The category RC is defined
as follows:

e The objects of RC are finite groups.
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e If G and H are finite groups, then Hompgc(G, H) = R®z B(H, Q)

e The composition of morphisms in RC is the R-linear extension of the composition in

C.
e For any finite group G, the identity morphism of G in RC is equal to R ®; Idg(7777)

This category is a R-linear category, i.e. the set of morphisms in RC are R-modules and the
composition in RC is R-bilinear.
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