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Day 1

2.3 Bisets

Definition 2.3.1. Let G,H be groups. Then an pH,Gq-biset is a left pHˆGopq-set. Equiv-

alently, an pH,Gq-biset U is both a left H-set and a right G-set, such that the H-action and

the G-action commute, i.e.

ph ¨ uq ¨ g “ h ¨ pu ¨ gq.

Hence we may write h ¨ u ¨ g or hug without ambiguity.

Remark 2.3.2. We can consider disjoint unions or products of bisets as before. If U and V

are pH,Gq-bisets, then a biset homomorphism f : U Ñ V satisfies fph ¨ u ¨ gq “ h ¨ fpuq ¨ g.

If U is a pH,Gq-biset, then the set pH ˆ GopqzU is called the set of pH,Gq-orbits on

U , denoted HzU{G. As before, the biset U is transitive if HzU{G has cardinality 1, or

equivalently, there exists ph, gq P H ˆG such that h ¨ u ¨ g “ v.

Example 2.3.3 (Identity Bisets). If G is a group, then the set G is a pG,Gq-biset for the left

and right actions of G on itself by multiplication. The biset is called the identity pG,Gq

biset and is denoted by IdG. More generally, if H is a subgroup of G, then the set G{H

is a pG,NGpHq{Hq-biset, and HzG is a pNGpHq{H,Gq-biset. More precisely for G{H: the

action is as follows: for hH P NGpHq{H and g1, g2 P G,

g1 ¨ g2H ¨ hH “ g1g2hH.

This is well-defined on the right: this is valid multiplication since hH “ Hh, and for h1H “

h2H, we have h1h “ h2 for some h P H. Then,

gh2H “ gh1hH “ gh1H.

Lemma 2.3.4. 1. If L is a subgroup of H ˆ G, then the set pH ˆ Gq{L is a transitive

pH,Gq-biset for the actions defined by:

@h P H, @pb, aqL P pH ˆGq{L, @g P G, h ¨ pb, aqL ¨ g “ phb, g´1aqL.
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2. If U is an pH,Gq-biset choose a set rHzU{Gs of representations of pH,Gq-orbits on U .

Then there is an isomorphism of pH,Gq-bisets

U –
ğ

uPrHzU{Gs

pH ˆGq{Lu,

where Lu “ pH,Gqu is the stabilizer of u in H ˆG, i.e. the subgroup of H ˆG defined

by

pH,Gqu “ tph, gq P H ˆG : h ¨ u “ u ¨ gu.

In particular, any transitive pH,Gq-biset is isomorphic to pHˆGq{L for some subgroup

L of H ˆG.

Proof. 1. This statement is a straightforward verification.

2. This statement follows directly from Lemma 2.2.2. One must note that since U is a

pH,Gq-biset, so the action of pH ˆGq on U is given by ph, g´1q ¨ u “ h ¨ u ¨ g´1, which

determines Lu. Equivalently, we could write

U –
ğ

uPrHzU{Gs

pH ˆGop
q{Lu

where Lu “ tph, gq P H ˆG
´1 : u ¨ h ¨ g “ hu.

Example 2.3.5. Let f : GÑ H be a group homomorphism. Then the set H has a pH,Gq-

biset structure given by

h ¨ k ¨ g “ hkfpgq.

This biset is isomorphic to pH ˆGq{∆f pGq, where ∆f pGq is the graph of f,

∆f pGq “ tpfpgq, gq : g P Gu.

The bijection is given by φ : k ÞÑ pk, 1q∆f pGq. One verifies the map satisfies the right action:

φpk ¨ gq “ φpkfpgqq “ pkfpgq, 1q∆f pGq “ pk, g
´1
q∆f pGq “ pk, 1q∆f pGq ¨ g “ φpkq ¨ g.

The map has inverse

ψ : ph, gq∆f pGq “ phfpg
´1
q, 1q∆f pGq ÞÑ hfpg´1

q

Definition 2.3.6. Let G and H be groups. If U is an pH,Gq-biset, then the opposite biset

U op is the pG,Hq-biset equal to U as a set, with actions defined by

@g P G, u P U, h P H, g ¨ u ¨ h (in U op) “ h´1ug´1 (in U).

Example 2.3.7. If H is a subgroup of G, then the map xH ÞÑ Hx´1 is an isomorphism of

pG,NGpHq{Hq-bisets from G{H to pHzGqop.
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Example 2.3.8 (Opposite Subgroup). If G and H are groups, and L ď H ˆ G, then the

opposite subgroup L˛ ď GˆH defined by

L˛ “ tpg, hq P GˆH : ph, gq P Lu.

With this notation, there is an isomorphism of pG,Hq-bisets

`

pH ˆGq{L
˘op
– pGˆHq{L˛, ph, gqL ÞÑ pg, hqL˛

(one must verify this map is well-defined as a map of pG,Hq-bisets).

Remark 2.3.9 (Elementary Bisets). Let G be a group. The following bisets are fundamen-

tal:

• If H ď G, the set G is an pH,Gq-biset in the obvious way. It is denoted by ResGH ,

where Res means restriction.

• Similarly, G is a pG,Hq-biset in the obvious way. It is denoted by IndGH , where Ind

means induction.

• If N Ĳ G and H “ G{N , the set H is a pG,Hq-biset, for the right action of H by

multiplication, and the left action of G by projection to H, then left multiplication. It

is denoted by InfGH , where Ind means induction.

• Similarly, H is a pH,Gq-biset in the same way as before. It is denoted by DefGH , where

Def means deflation.

• If f : G Ñ H is a group isomorphism, then the set H is a pH,Gq-biset, for the left

action of H by multiplication, and the right action of G given by taking the image in f ,

then multiplying on the right in H. It is denoted by Isopfq of IsoHG if the isomorphism

f is clear from context.
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Composition of Bisets

Definition 2.3.11. Let G,H,K be groups, and let U be a pH,Gq-biset and V a pK,Hq-

biset. Define the composition of V and U to be the set of H-orbits on the right H-action

on V ˆ U , where the right action of H is given by

pv, uq ¨ h “ pv ¨ h, h´1
¨ uq.

Denote this set by V ˆH U , and denote the H-orbit of pv, uq P V ˆ U by pv,H uq P V ˆH U .

V ˆH U is a pK,Gq-biset for the actions defined by

k ¨ pv,H uq ¨ g “ pk ¨ v,H , u ¨ gq.

We will verify well-definedness of this action. Let pv1,H , u1q “ pv2,H u2q P pV ˆH Uq, and let

k P K, g P G. There exists h P H such that

pv1, u1q ¨ h “ pv1 ¨ h, h
´1
¨ u1q “ pv2, u2q,

so v1 ¨ h “ v2 and h´1 ¨ u1 “ u2. Then

pk ¨ v1, u1 ¨ gq “ pk ¨ v2 ¨ h, h
´1
¨ u2 ¨ gq “ pk ¨ v1, u2 ¨ gq ¨ h,

and hence pk ¨ v1,H u1 ¨ gq “ pk ¨ v2,H u2 ¨ gq as desired.

Definition 2.3.12. Let G be a group. A section pT, Sq of G is a pair of subgroups of G

such that S Ĳ T . The associated subquotient of G is the factor group T {S.

Example 2.3.13 (Defres and Indinf). Let G be a group and let pT, Sq be a section of G (so

S Ĳ T ď Gq. Then there is an isomorphism of pG, T {Sq-bisets:

IndGT ˆT InfTT {S
–
ÝÑ G{S

sending pg,T tSq to gtS. For this reason, the pG, T {Sq-biset G{S will be denoted by IndinfGT {S.

Let’s verify this! Recall IndGT is G as a pG, T q-biset, and InfTT {S is T {S viewed as a pT, Sq-biset,

so the definition makes sense. The map is well-defined: since every element of pg,T tSq is of

the form pgt1, pt1q´1tSq for some t1 P T , any choice of representative is sent to gt1pt1q´1tS “ gtS

via the isomorphism. Moreover, the inverse map is given by gS ÞÑ pg, 1Sq, and it is straight-

forward to see that these maps are indeed inverse (since pg,T tSq “ pgt,T 1Sq). Finally, one

verifies that these are pG, T {Sq-equivariant maps.

Similarly, there is an isomorphism of pT {S,Gq-bisets

DefTT {S ˆT ResGT
–
ÝÑ SzG,

sending ptS,T gq to Stg. For this reason, the pT {S,Gq-biset SzG will be denoted by DefresGT {S.

The verification of this is similar to before.
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Proposition 2.3.14. Let G,H,K,L be groups.

1. If U is an pH,Gq-biset, if V is a pK,Hq-biset, and W is an pL,Kq-biset, then there is

a canonical isomorphism of pL,Gq-bisets

W ˆK pV ˆH Uq
–
ÝÑ pW ˆK V q ˆH U

given by
`

w,k pv,h , uq
˘

ÞÑ
`

pw,K vq,H uq
˘

for all pw, v, uq P W ˆ V ˆ U .

2. If U is an pH,Gq-biset and V is a pK,Hq-biset, then there is a canonical isomorphism

of pG,Kq-bisets

pV ˆH Uq
op –
ÝÑ U op

ˆH V
op

given by pv,H uq ÞÑ pu,H vq.

3. If U and U 1 are pH,Gq-bisets and if V and V 1 are pK,Hq-bisets, then there are canonical

isomorphisms of pK,Gq-bisets

V ˆH pU \ U
1
q – pV ˆH Uq \ pV ˆH U

1
q

pV \ V 1q ˆH U – pV ˆH Uq \ pV
1
ˆH Uq.

The first is defined by

pv,H uq ÞÑ

#

pv,H uq P pV ˆH Uq u P U

pv,H uq P pV ˆH U
1q u P U 1

and the second follows similarly.

4. If U is an pH,Gq-biset, then there are canonical pH,Gq-biset isomorphisms

IdH ˆHU
–
ÝÑ U

–
ÐÝ U ˆG IdG

given by ph,H uq ÞÑ h ¨ u and pu,G gq ÞÑ u ¨ g for all ph, u, gq P H ˆ U ˆG.

The proof of this proposition is fairly straightforward, it’s mostly just verifying that the

defined maps are equivariant. (Note I added in the definition of the map in part 3.)

Remark 2.3.15. Assertion 1 allows for the unambiguous notation of W ˆK V ˆ U and

pw,K v,H , uq.

Definition 2.3.16. Let G,H be groups and U a pH,Gq-biset.

1. If L ď H, and u P U , define

Lu :“ tg P G : Dl P L, l ¨ u “ u ¨ gu Ď G.

Then Lu is a subgroup of G. In particular, 1u is the stabilizer of u in G, considering

U as a right G-set.
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2. If K is a subgroup of G, then set

uK “ th P H : Dk P K,h ¨ u “ u ¨ ku Ď H.

Then uK is a subgroup of H. In particular, u1 is the stabilizer of u in H, considering

U as a left H-set.

Let’s verify that Lu ď G, the other side follows similarly. If g1, g2 P L
u, then there exists

l1, l2 P L such that l1 ¨ u “ u ¨ g1, l2 ¨ u “ u ¨ g2. First, l´1
1 ¨ u “ u ¨ g´1

1 , so g1 P L
u. Next note

pl1 ¨ uq ¨ g2 “ pu ¨ g1q ¨ g2, but by commutativity of bisets, we have:

pl1 ¨ uq ¨ g2 “ pu ¨ g1q ¨ g2

l1 ¨ pu ¨ g2q “ u ¨ g1g2

l1 ¨ pl2 ¨ uq “ u ¨ g1g2

l1l2 ¨ u “ u ¨ g1g2

as desired.

Remark 2.3.17. If G is a group, if U “ IdG, and H ď G, then Hu “ u´1Hu, for u P G, and
uH “ uHu´1. So the above notation is a generalization of the usual notation of conjugation

of subgroups.

Let’s verify this for Hu. Hu “ tg P G : Dh P H, h ¨ u “ u ¨ gu, or equivalently, hu “ tg P G :

Dh P H, g “ u´1huu, which indeed is precisely u´1Hu.

Proposition 2.3.18. Let G,H be groups and let U be a pH,Gq-biset.

1. If u P U and pT, Sq is a section of H, then pT u, Suq is a section of G. If pY,Xq is a

section of G, then puY, uXq is a section of H.

2. In particular, if u P U , then 1u Ĳ Hu and u1 Ĳ uG, and there is a canonical group

isomorphism

cu : Hu
{1u

–
ÝÑ

uG{u1,

defined by cupg1uq “ hu1, where g P Hu and h P H is such that h ¨ u “ u ¨ g.

3. The stabilizer pH,Gqu of u in H ˆG is equal to the set of pairs ph, gq in uGˆHu such

that hu1 “ cupg1uq.

4. The group u1 ˆ 1u is a normal subgroup of pH,Gqu and there are canonical group

isomorphisms
uG{u1

–
ÐÝ pH,Gqu{p

u1ˆ 1uq
–
ÝÑ Hu

{1u

defined by ph, gqpu1ˆ 1uq ÞÑ hu1 and ph, gqpu1ˆ 1uq ÞÑ g1u.
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Proof. 1. Let u P U and pT, Sq be a section of H. It is immediate from the definitions

that Su ď T u ď G. It remains to show normality. Now if g P T u and g1 P Su, then

there exist t P T and s P S such that t ¨ u “ u ¨ g and s ¨ u “ u ¨ g1. We wish to show

gg1g´1 P S. We compute:

pu ¨ gqg1g´1
“ pt ¨ u ¨ g1qg´1

“ tps ¨ u ¨ g´1
q “ tspt´1

¨ uq,

hence by definition, gg1g´1 P Su since tst´1 P S because S Ĳ T . Thus, Su Ĳ T u. The

other half of (1) is similar to prove.

2. Assertion 1 implies 1u Ĳ Hu, as pH, 1q is clearly a section of G. Now if g P Hu and

h P H satisfy h ¨ u “ u ¨ g, then h P uG by definition. Let h1 P H be another element

satisfying h1 ¨ u “ u ¨ g “ h ¨ u. Then, we see ph´1h1q ¨ u “ u, so h1 P hu1 (recalling that
u1 is simply the stabilizer). Thus, the map

cu : Hu
Ñ

uG{u1, g ÞÑ hu1 where h ¨ u “ u ¨ g

is well defined. We check it is a group homomorphism: if g1, g2 P H, then cupg1qcupg2q “

h1h2
u1, where h1 ¨ u “ u ¨ g1 and h2 ¨ u “ u ¨ g2. It follows from prior computations

(2.3.16) that h1h2 ¨ u “ u ¨ g1g2, so cupg1g2q “ h1h2
u1, as desired.

Moreover cu is surjective, since for any h P uG, there exists a g P G with h ¨ u “ u ¨ g

by definition of uG. Finally, the kernel of cu is precisely 1u: cupgq “ 1u1 if and only if

u “ u ¨ g if and only if g stabilizes u if and only if g P 1u, so the induced isomorphism

is exactly as desired.

3. Recall that H ˆG acts on U by h ¨ u ¨ g “ hug´1. Therefore, the stabilizer is precisely

tph, gq P H ˆ G : h ¨ u “ u ¨ gu. On the other hand, hu1 “ cupg1uq if and only if

h ¨ u “ u ¨ g, as desired.

4. It follows from the definition of pH,Gqu and (2) that u1 ˆ 1u is normal in pH,Gqu ď

H ˆ G. The map ph, gqpu1 ˆ 1uq ÞÑ hu1 is well-defined: suppose ph1, g1qp
u1 ˆ 1uq “

ph2, g2qp
u1 ˆ 1uq, then ph1h

´1
2 , g1g

´1
2 q P p

u1 ˆ 1uq. Hence h1
u1 “ h2

u1, as desired.

It is clear the map is a group homomorphism, and the map has inverse defined by

hu1 ÞÑ ph, gqpu1 ˆ 1uq, where cupg1uq “ hu1 (checking this is well-defined is similar to

before). Thus, we have the given isomorphism on the left. The isomorphism on the

right follows similarly.
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Day 2

Definition 2.3.19. Let G,H,K be groups. If L ď H ˆG, and if M ď K ˆH, set

M ˚ L “ tpk, gq P K ˆG : Dh P H, pk, hq PM and ph, gq P Lu.

M ˚ L is a subgroup of K ˆG - this is a straightforward verification.

Lemma 2.3.20. Let G,H,K be groups, let U be a pH,Gq-biset and V a pK,Hq-biset. Then

if u P U and v P V , the stabilizer of pv,H uq in K ˆG is equal to

pK,Gqpv,Huq “ pK,Hqv ˚ pH,Gqu.

Proof. Suppose pk, gq P pK,Gqpv,Huq, that is, it satisfies k ¨ pv,H uq “ pv,H uq ¨ g. Then

pkv,H uq “ pv,H ugq,, so there exists some h P H satisfying pkv,H uq “ pv,H ugq ¨ h “

pvh,H h
´1ugq, so kv “ vh and hu “ ug. So pk, hq P pK,Hqv and ph, gq P pH,Gqu, and

thus pk, gq P pK,Hqv ˚ pH,Gqu.

Conversely, if pk, gq P pK,Hqv ˚ pH,Gqu, so there exists h P H satisfying kv “ vh and

hu “ ug. Thus,

kpv,H uq “ pkv,H uq “ pvh,H uq “ pv,H ugq “ pv,H uqg,

and so pk, gq P pK,Gqpv,Huq as desired.

Definition 2.3.21. Let G,H be groups and L ď H ˆG. Define:

p1pLq “ th P H : Dg P G, ph, gq P Lu

p2pLq “ tg P G : Dg P G, ph, gq P Lu

k1pLq “ th P H : ph, 1q P Lu

k2pLq “ tg P G : p1, gq P Lu

qpLq “ L{pk1pLq ˆ k2pLqq

With this notation, the stabilizer in HˆG of the element u “ p1, 1qL of the biset pHˆGq{L

is obviously the group L.

The group Hu as defined previously is equal to the projection p2pLq of L on G: Hu :“ tg P

G : Dh P H, h ¨ p1, 1qL “ p1, 1qL ¨ gu, and the equality only holds when ph, gq P L (remember

p1, 1qL ¨ g “ p1, g´1qL). Similarly uG “ p1pLq.

The stabilizer u1 of u in H is the group k1pLq (this follows similarly as before) and the

stabilizer 1u of u in G is the group k2pLq.

The isomorphism cu from Prop (2.3.18) is the map:

cu : p2pLq{k2pLq Ñ p1pLq{k1pLq, gk2pLq ÞÑ hk1pLq with ph, gq P L.

Prop (2.3.18.4) implies pk1pLq ˆ k2pLqq Ĳ L, and there are canonical group isomorphisms:

p1pLq{k1pLq – qpLq – p2pLq{k2pLq.
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Lemma 2.3.22. Let G,H,K be groups. Let L ď H ˆG and M ď K ˆH.

1. There are exact sequences of groups:

1 Ñ k1pMq ˆ k2pLq
i
ÝÑM ˚ L

θ
ÝÑ

`

p2pMq X p1pLq
˘

{
`

k2pMq X k1pLq
˘

Ñ 1

1 Ñ k1pMq Ñ k1pM ˚ Lq Ñ
`

p2pMq X k1pLq
˘

{
`

k2pMq X k1pLq
˘

Ñ 1

1 Ñ k2pLq Ñ k2pM ˚ Lq Ñ
`

k2pMq X p1pLq
˘

{
`

k2pMq X k1pLq
˘

Ñ 1

2. There are inclusions of subgroups

k1pMq Ď k1pM ˚ Lq Ď p1pM ˚ Lq Ď p1pMq

k2pLq Ď k2pM ˚ Lq Ď p2pM ˚ Lq Ď p2pLq

Proof. 1. First note that k1pMqˆk2pLq ďM ˚L, since any h P k1pMq satisfies ph, 1q PM

and g P k2pLq satisfies p1, gq P L. We set i to be the inclusion, it is obviously injective.

Let pk, gq P M ˚ L, so there exists h P H such that pk, hq P M and ph, gq P L.

Then, h P p2pMq and h P p1pLq, and thus h P p2pMq X p1pLq. Now suppose h1 P H

also satisfies pk, h1q P M and ph1, gq P L. then p1, h´1h1q P M and ph´1h1, 1q P L,

so h´1h1 P k2pMq and h´1h1 P k1pLq, and hence h´1h1 P k2pMq X k1pLq. There-

fore, the map θ : pk, gq ÞÑ h
`

k2pMq X k1pLq
˘

is a well-defined map from M ˚ L to
`

p2pMq X p1pLq
˘

{
`

k2pMq X k1pLq
˘

. It is straightforward to check it is a group homo-

morphism.

This morphism is surjective: if h P p2pMq X p1pLq, then there exists a k P K for

which pk, hq P M and there exists g P G such that ph, gq P L. So pk, gq P M ˚ L, and

θpk, gq “ hpk2pMq X k1pLqq.

We next check exactness. If k P k1pMq and g P k2pLq, then by definition pk, 1q P M

and p1, gq P L. So θpk, gq “ 1
`

k2pMq X k1pLq
˘

, i.e. k1pMq ˆ k2pLq ď ker θ. Conversely,

suppose pk, gq P ker θ. Then there exists h P k2pMq X k1pLq for which pk, hq P M

and ph, gq P L. Since h P k2pMq, p1, hq P M , and pk, 1q “ pk, hqp1, hq´1 P M , so

k P k1pMq. Similarly, ph, 1q P L and p1, gq “ ph, gqph, 1q´1 P L, so g P k2pLq. Thus,

pk, gq P k1pMq ˆ k2pLq, and we conclude that ker θ “ k1pMq ˆ k2pLq. Thus, the first

sequence is exact.

Now an element k P K is in k1pM ˚ Lq if and only if there exists h P H for which

pk, hq P M and ph, 1q P L. In this case, h P p2pMq X k1pLq. Therefore, the image

of the group k1pM ˚ Lq ˆ 1 by the morphism θ defined above is precisely
`

p2pMq X
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k1pLq
˘

{
`

k2pMqXk1pLq
˘

. Moreover, its intersection with the kernel k1pMqˆk2pLq of θ

is k1pMq ˆ 1. This is sufficient to define the second exact sequence. The third follows

similarly.

2. It is obvious that k1pM ˚Lq Ď p1pM ˚Lq from the definitions. Now if k P k1pMq, then

pk, 1q PM and p1, 1q P L, so k P k1pM ˚ Lq. Finally, if k P p1pM ˚ Lq, then there exists

h P H, g P G for which pk, hq P M and ph, gq P L, so in particular, k P p1pMq. The

second line follows similarly.

Remark 2.3.23 (Factorization of Transitive Bisets). If G,H are groups, then by Lemma

(2.3.4), any pH,Gq-biset is a disjoint union of transitive pH,Gq-bisets, and a transitive

pH,Gq-biset is isomorphic to pH ˆ Gq{L for some L ď H ˆ G (recall L is the stabilizer

of some u P U in H ˆG).

Lemma 2.3.24 (Mackey formula for bisets). Let G,H,K be groups. If L ď H ˆ G and

M ď K ˆH, then there is an isomorphism of pK,Gq-bisets

`

pK ˆHq{M
˘

ˆH
`

pH ˆGq{L
˘

–
ğ

hPrp2pMqzH{p1pLqs

pK ˆGq{pM ˚
ph,1qLq,

where rp2pMqzH{p1pLqs is a set of representatives of double cosets.

Proof. Set V :“ pK ˆHq{M and U “ pH ˆGq{L. We verify that the map:

φ : K
`

pk, hqM,H ph
1, gqL

˘

G ÞÑ p2pMqph
´1h1qp1pLq

is a bijection of biset orbits between KzpV ˆH Uq{GÑ p2pMqzH{p1pLq.

First to verify the map is well-defined, we must check two things, first that the choice of

representative of the V ˆH U term does not matter, and second, that two elements in the

same pK,Gq-orbit are sent to the same orbit. First note if

`

pk1, h1qM,H ph
1
1, g1qL

˘

“
`

pk2, h2qM,H ph
1
2, g2qL

˘

,

then there exists h P H for which

`

pk1, h1qM, ph11, g1qL
˘

¨ h “
`

rpk1, h1qM s ¨ h, h
´1
¨ rph11, g1qLs

˘

“
`

pk1, h
´1h1qM, ph´1h11, g1qL

˘

“
`

pk2, h2qM, ph12, g2qL
˘

so h´1h1 “ h2 and h´1h11 “ h12, and it is a quick check from there that φ is independent of

choice of representative in V ˆH U . Moreover, it is clear that any two elements in the same

orbit are sent to the same orbit, i.e. φ is invariant with respect to the left K and right G
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actions, since the K and G actions do not affect the H-terms.

To see that the map is a bijection, the inverse map is given by φ´1 : p2pMqzH{p1pLq Ñ

KzpV ˆH Uq{G, given by

p2pMqhp1pLq ÞÑ K
`

p1, 1qM,H ph, 1qL
˘

G.

First to check that the map is well-defined we check that if h1 and h2 live in the same

orbit, then they are sent to the same orbit. If p2pMqh1p1pLq “ p2pMqh2p1pLq, there exist

hM P p2pMq, hL P p1pLq such that h1 “ hMh2hL, and phL, gq P L and pk, hMq P M for some

k P K, g P G. Then

p2pMqh1p1pLq ÞÑ K
`

p1, 1qM,H ph1, 1qL
˘

G “ K
`

pk´1, h´1
M qM,H ph1hL, gqL

˘

G

“ K
`

pk´1, h´1
M qM ¨ h´1

M ,H hMph1hL, gqL
˘

G

“ K
`

pk´1, 1qM,H phMh1hL, gqL
˘

G

“ K
`

p1, 1qM,H ph2, 1qL
˘

GÐ [ p2pMqh2p1pLq

Thus the map is well-defined. Finally, it is straightforward to see that these are indeed

inverse maps, so we first conclude that we have an isomorphism of biset orbits.

Now, we have from (2.3.4) a isomorphism of pK,Gq-bisets:

`

pK ˆHq{M
˘

ˆH
`

pH ˆGq{L
˘

–
ğ

xPrKzpVˆHUq{Gs

pK ˆGq{pK,Gqx,

however by the isomorphism we may rewrite this as:

`

pK ˆHq{M
˘

ˆH
`

pH ˆGq{L
˘

–
ğ

uPrp2pMqzH{p1pLqs

pK ˆGq{pK,Gqφ´1puq.

Finally, we must compute pK,Gqφ´1puq, i.e. the stabilizer of
`

p1, 1qM,H ph, 1qL
˘

in K ˆ G.

It is clear that M is the stabilizer of p1, 1qM . Moreover, it straightforward to verify

that ph,1qL “ ph, 1qLph´1, 1q is the stabilizer of ph, 1qL, so finally by (2.3.20) we conclude

pK,Gqφ´1puq “M ˚ ph,1qL and the result follows.

The book calls this verification “easy to check.” Ha. Ha.

Lemma 2.3.25 (Goursat Lemma). Let G,H be groups.

1. If pD,Cq is a section of H and pB,Aq is a section of G such that there exists a group

isomorphism f : B{AÑ D{C then

LpD,Cq,f,pB,Aq “ tph, gq P H ˆG : h P D, g P B, hC “ fpgAqu

is a subgroup of H ˆG.

11



2. Conversely, if L is a subgroup of H ˆ G, then there exists a unique section pD,Cq of

H, a unique section pB,Aq of G, and a unique group isomorphism f : B{A Ñ D{C

such that L “ LpD,Cq,f,pB,Aq.

Proof. 1. This is an easy verification, all that is required to check is that the subgroup is

indeed a subgroup.

2. We assert that the choices:

D “ p1pLq, B “ p2pLq,

C “ k1pLq, A “ k2pLq,

and f : B{A Ñ D{C determined by fpbAq “ dC when pd, bq P L satisfy L “

LpD,Cq,f,pB,Aq and are unique. First, it follows that these choices form sections of H

and G, with isomorphic associated subquotients from (2.3.18) (recall that u “ p1, 1qL),

and moreover, the map f corresponds exactly to the map cu in (2.3.18.3), so it is an

isomorphism. They correspond since pd, bq P L if and only if d ¨ p1, 1qL “ p1, 1qL ¨ b.

Now it is clear from definitions that LpD,Cq,f,pB,Aq “ L.

It follows that this choice is unique, since p1pLpD,Cq,f,pB,Aqq “ D, p2pLpD,Cq,f,pB,Aqq “ B,

et cetera. So if we have L “ LpD,Cq,f,pB,Aq “ LpD1,C1q,f 1,pB1,A1q, it immediately follows

that A “ A1, B “ B1, and so on.

The next result in some sense allows us to consider the 5 elementary bisets as “essential,”

as in, every biset pH ˆGq{L can be decomposed as a composition of those 5 bisets.

Theorem 2.3.26. Let G and H be groups. If L ď H ˆ G, let pD,Cq and pB,Aq be

sections of H,G respectively and let f be the group isomorphism B{A
–
ÝÑ D{C such that

L “ LpD,Cq,f,pB,Aq. Then there is an isomorphism of pH,Gq-bisets:

pH ˆGq{L – IndHD ˆD InfDD{C ˆD{C Isopfq ˆB{A DefBB{AˆB ResGB

Proof. Define Λ “ pH ˆGq{L and let Γ denote the right-hand side of the proposed isomor-

phism. Define the map ϕ : Λ Ñ Γ by

ϕ : ph, gqL ÞÑ ph,D C,D{C C,B{AA,B g
´1
q

(note that the middle terms are all identity cosets) and ψ : Γ Ñ Λ by

ψ : ph,D , dC,D{C , d
1C,B{A, bA,B gq ÞÑ phdd1, g´1b´1

qL,
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for h P H, d, d1 P D, b P B, g P G. First we verify that these maps are well defined: suppose

ph, gq P H ˆG and pd, bq P L. Note f satisfies fpbAq “ dC by the previous lemma. Thus

ϕ
`

phd, gbqL
˘

“ phd,D C,D{C C,B{AA,B b
´1g´1

q

“ ph,D dC,D{C C,B{AAb
´1,B g

´1
q

“ ph,D CpdCq,D{C , C,B{A pb
´1AqA,B g

´1
q

“ ph,D C,D{C pdCqCpbAq
´1,B{AA,B g

´1
q

However, since fpbAq “ dC, we see that pdCqCpbAq´1 “ C P Isopfq, and hence, ϕ is indeed

well-defined. Similarly, we check ψ is well-defined. Let x P D, yC P D{C, zA P B{A, y1 P

fpzAq, t P B. We verify that the image of ψ of the element

E “ phx,D x
´1dCy,D{C y

´1d1Cy1,B{A z
´1bAt, t´1gq P Γ

should be equal to ψph,D , dC,D{C , d
1C,B{A , bA,B gq. We compute:

ψpEq “ phxx´1dyy´1d1y1, g´1tt´1b´1zqL

“ phdd1y1, g´1b´1zqL

“ phdd1, g´1b´1
qL

The final line comes from the fact that py1, zq P L, since fpzAq “ y1C, implying py1, zq P

LpD,Cq,f,pB,Aq “ L. Thus both maps are indeed well-defined. It is straightforward to check

that these maps are pH,Gq-equivariant, so they are indeed maps of bisets. Finally, we check

that they are inverse. It is obvious that ψ ˝ ϕ “ IdΛ. We compute:

ϕ ˝ ψ
`

ph,D , dC,D{C d
1C,B{A bA,B gq

˘

“ ϕ
`

phdd1, g´1b´1
qL
˘

“ phdd1,D C,D{C C,B{AA,B bgq

“ ph,D dd
1C,D{C C,B{AApbAq,B gq

“ ph,D pdCqpd
1Cq,D{C C,B{A bA,B gq

“ ph,D dC,D{C d
1C,B{A bA,B gq

as desired.

In short, any transitive pH,Gq-biset can be uniquely realized as the composition of these 5

fundamental bisets.
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Day 3

2.5 The Burnside Ring (cont.)

First recall we have a construction: if G is a group and X is a G-set, we construct the

pG,Gq-biset X̃ by setting it to be the set GˆX with biset structure given by

a ¨ pg, xq ¨ b “ pagb, b´1xq

Let us recall the maps given in (2.5.10). Let G,H be groups and U a pH,Gq-biset. If X is

a H-set, then:

αU,X : X̃ ˆH U Ñ U ˆG ČpU op ˆH Xq

`

ph, xq,H u
˘

Ñ

ˆ

hu,G
`

1, pu,H xq
˘

˙

is well-defined. Additionally, if Y is a G-set then

βU,Y : ČU ˆG Y Ñ U ˆG Ỹ ˆG U
op

`

h, pu,G yq
˘

ÞÑ
`

hu,G p1, yq,G u
˘

is well defined. If U is left-free then α, β are both injective, and if U is left-transitive then

α, β are both surjective, regardless of X and Y .

Corollary 2.5.1. Let G be a group and let H ď G.

1. Let X be a G-set. Then there is an isomorphism of pG,Hq-bisets

X̃ ˆG IndGH – IndGH ˆH
ČResGH X

and an isomorphism of pH,Gq-bisets

ResGH ˆGX̃ –
ČResGH X ˆH ResGH

2. Let Y be an H-set. Then there is an isomorphism of pG,Gq-bisets

IndGH ˆH Ỹ ˆH ResGH –
ČIndGH Y

Proof. Note that ResGH X refers to the left G-set ResGH ˆHX and IndGH Y refers to the left

G-set IndGH ˆHY .

The first isomorphism in part 1 and the isomorphism in part 2 follow from the previous

proposition, by switching G and H and letting U be the pG,Hq-biset IndGH . Recall IndGH
is the set G itself. It is obvious that IndGH is left-free and left-transitive, so α and β are

isomorphisms. Moreover, it is clear that pIndGHq
op – ResGH . Now, the first isomorphism in

part 1 follows via the map α and part 2 follows from the map β.
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Now, note that it is clear that given bisets A,B, A – B if and only if Aop – Bop. Using

this fact, the second isomorphism in part 1 follows from the first isomorphism, the fact that

pV ˆH Uq
op – U op ˆH V

op for compatible bisets U, V , and the observation that X̃ – X̃op.

Most of these facts are clear or have been proven before, but the last isomorphism needs

verifying. We construct a biset map φ : X̃ Ñ X̃op by pg, xq ÞÑ pg´1, gxq. We verify that this

map is pG,Gq-equivariant:

a ¨ φpg, xq ¨ b “ a ¨ pg´1, gxq ¨ b

“ pb´1g´1a´1, agxq

“
`

pagbq´1, agx
˘

“
`

pagbq´1, pagbqb´1g
˘

“ φpagb, b´1gq

“ φ
`

a ¨ pg, xq ¨ b
˘

This map has inverse φ´1 : X̃op Ñ X̃ also given by pg, xq ÞÑ pg´1, gxq. Equivariance follows

similarly as before, and it is straightforward to compute that these maps are inverse. Thus

the bisets are isomorphic, as desired.

Corollary 2.5.2. Let G be a group.

1. LetN be a normal subgroup ofG, andX be a pG{Nq-set. Then there is an isomorphism

of pG{N,Gq-bisets

X̃ ˆG{N DefGG{N – DefGG{N ˆG
ČInfGG{N X,

and an isomorphism of pG,G{Nq-bisets

InfGG{N ˆG{NX̃ –
ČInfGG{N X ˆG InfGG{N .

2. Let N be a normal subgroup of G and Y be a G-set. Then there is an isomorphism of

pG{N,G{Nq-bisets

DefGG{N ˆGỸ ˆG InfGG{N –
ČDefGG{N Y

Proof. The proof follows the same as the previous one, now using the assignment H “ G{N

and U “ DefGG{N .

We conclude the section by looking at a proposition which considers the case when G and

H have coprime order. We first revisit a necessary fact:

Lemma 2.5.3. Let G be a group and rsGs a set of representatives of conjugacy classes of

subgroups of G and H. Then BpGq is a free abelian group with basis B “ trG{Ss : S P rsGsu.
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Proof. First, recall from (2.2.2) that every G-set X can be written (up to isomorphism) as

X “
ğ

KPrsGs

aKpXqG{K

where aKpXq P N. Therefore, B is a spanning set of BpGq. It remains to show B is linearly

independent. Let us suppose we have a relation

0 “
ÿ

SPrsGs

aSrG{Ss

with each aS P Z. Denote rsGs
` to be the subset of S P rsGs with aS ą 0 and rsGs

´ to be

the subset with aS ă 0. If we can show these sets are empty, we are done.

We can rearrange terms so all coefficients are positive as follows:

ÿ

SPrsGs`

aSrG{Ss “
ÿ

TPrsGs´

p´aT qrG{T s

Now each sum is the image of some G-set in BpGq as follows:

X “
ğ

SPrsGs`

aSG{S, Y “
ğ

TPrsGs´

p´aT qG{T.

Since their images in BpGq are equal, X – Y . Now, suppose for contradiction that rsGs
`

or rsGs
´ is nonempty. Then, consider the poset of rsGs

` Y rsGs
´ ordered by inclusion up

to conjugation. Since these sets are finite, some maximal element H must exist. Suppose

without loss of generality H P rsGs
`, then |XH | “ aSrG : Hs by maximality. However, by

(2.4.5), then |Y H | “ aSrG : Hs ą 0. Since H P rsGs
`, H R rsGs

´, but the only sets in B
fixed by H are rG{H 1s with H ď H 1, contradicting maximality. Thus rsGs

` “ rsGs
´ “ H,

as desired.

Proposition 2.5.4. Let G,H be finite groups.

1. If X is a G-set and Y is an H-set, then X ˆ Y is a pG ˆ Hq-set with action defined

componentwise. The correspondence pX, Y q ÞÑ X ˆ Y induces a bilinear map BpGq ˆ

BpHq Ñ BpGˆHq and hence a homomorphism

π : BpGq bZ BpHq Ñ BpGˆHq

which is an injective ring homomorphism preserving identity elements. If G and H

have coprime order, this map is an isomorphism.

2. If U is a pG,Gq-biset and V is an pH,Hq-biset, then U ˆ V is a pGˆH,GˆHq-biset

for the structure given again by componentwise multiplication, i.e.

pg, hq ¨ pu, vq ¨ pg1, h1q “ pgug1, huh1q.
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The correspondence pU, V q ÞÑ U ˆ V induces a bilinear map BpG,Gq ˆ BpH,Hq Ñ

BpGˆH,GˆHq, hence a linear map

π2 : BpG,Gq bZ BpH,Hq Ñ BpGˆH,GˆHq

which is an injective ring homomorphism preserving identity elements. If G and H

have coprime orders, then this map is an isomorphism.

Proof. 1. The correspondence π̃pX, Y q ÞÑ XˆY induces an obvious map BpGqˆBpHq Ñ

BpGˆHq which is bilinear, since pX1\X2qˆY – pX1ˆY q\ pX2ˆY q, and similarly

in the second argument. Thus by the universal property of tensor products, a linear

map π : BpGq bZ BpHq Ñ BpG ˆ Hq is induced. We verify that π respects the

multiplicative structure: we must show that if X,X 1 are G-sets and Y, Y 1 are H-sets,

then π̃pX, Y q ˆ π̃pX 1, Y 1q – π̃
`

pX ˆX 1q, pY ˆ Y 1q
˘

. This follows since

pX ˆ Y q ˆ pX 1
ˆ Y 1q – pX ˆX 1

q ˆ pY ˆ Y 1q

is an obvious isomorphism of pG ˆ Hq-sets, so their images in the induced map are

equal. Hence π is a ring homomorphism. Finally, π is unital, since if X is a G-set of

cardinality 1 and Y is a H-set of cardinality 1, X ˆ Y is a pGˆHq-set of cardinality

1.

Let rsGs and rsHs denote sets of representatives of conjugacy classes of subgroups of

G and H respectively. Then BpGq is free abelian with basis trG{Ss : S P rsGsu, and

BpHq is free abelian with basis trH{T s : T P rsHsu. Then, BpGq bZ BpHq is free

abelian with basis B “ trG{Ss b rH{T s : pS, T q P rsGs ˆ rsHsu.

It is clear that πprG{SsbrH{T sq “ rpGˆHq{pSˆT qs. Moreover, the subgroups SˆT

lie in different conjugacy classes of subgroups of GˆH, where pS, T q P rsGs ˆ rsHs, so

πpBq is a subset of a Z-basis of BpGˆHq. Thus π is injective.

Recall if G,H are groups, and L ď GˆH, we defined:

p1pLq “ th P H : Dg P G, ph, gq P Lu

p2pLq “ tg P G : Dg P G, ph, gq P Lu

k1pLq “ th P H : ph, 1q P Lu

k2pLq “ tg P G : p1, gq P Lu

qpLq “ L{pk1pLq ˆ k2pLqq

Now if G,H have coprime orders and L ď G ˆ H, then qpLq “ 1, since qpLq –

p1pLq{k1pLq – p2pLq{k2pLq. From this it is clear to see that L “ k1pLq ˆ k2pLq “

p1pLqˆp2pLq. Hence, if L ď GˆH, then L “ SˆT for some subgroups S ď G, T ď H.

Since a Z-basis of BpGˆHq is B1 “ trGˆH{Ls : L P rsGˆHsu, it follows that πpBq “ B1
and hence π is surjective, and therefore an isomorphism.
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2. Set G2 “ GˆGop and H2 “ H ˆHop. Part 1 gives a linear map:

π : BpG2q bZ BpH2q Ñ BpG2 ˆH2q,

and G2 ˆ H2 – pG ˆ Hq2 “ pG ˆ Hq ˆ pG ˆ Hqop. Composing this gives a map

BpG2q bZ BpH2q Ñ B
`

pGˆHq2
˘

. It follows from the definition of bisets that we may

identify this map with the map

π2 : BpG,Gq bZ BpH,Hq Ñ BpGˆH,GˆHq

since BpG2q “ BpG,Gq and so on. It follows from part 1 that π2 is injective, and an

isomorphism if G and H have coprime orders.

It remains to verify that π2 is a ring homomorphism under biset multiplication. We

wish to show that if U,U 1 are pG,Gq-bisets and V, V 1 are pH,Hq-bisets, then π2pU ˆG
U 1, V ˆHV

1q “ πpU, V q¨πpU 1, V 1q. However, there is an isomorphism of pGˆH,GˆHq-

bisets given by:

pU ˆG U
1
q ˆ pV ˆH V

1
q – pU ˆ V q ˆGˆH pU

1
ˆ V 1q

`

pu,G u
1
q, pv,H v

1
q
˘

ÞÑ
`

pu, vq,GˆH pu
1, v1q

˘

and multiplicity of π2 follows. Finally it is obvious that the map sends identity bisets

to identity bisets.

3.1 The Biset Category of Finite Groups

Definition 3.1.1. The biset category C of finite groups is the category defined as follows:

• The objects are finite groups.

• If G and H are finite groups, HomCpG,Hq “ BpH,Gq.

• If G,H,K are finite groups, and u P HomCpG,Hq and v P HomCpH,Kq, then v ˝ u :“

v ˆH u.

• For any finite group G, the identity morphism of G in C is rIdGs.

Remark 3.1.2. It follows that C is preadditive (in the sense of MacLane) - the morphism

sets are abelian groups and composition is bilinear.

If G and H are finite groups, then any morphism from G to H in C is a linear combination

with integral coefficients of morphism of the form rpH ˆ Gq{Ls where L ď H ˆ G. From

(2.3.26) any such morphism factors as follows:

G
ResGB
ÝÝÝÑ B

DefBB{A
ÝÝÝÝÑ B{A

Isopfq
ÝÝÝÑ D{C

InfDD{C
ÝÝÝÝÑ D

IndH
D

ÝÝÝÑ H
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In other words C is generated as a preadditive category by the five types of morphisms above,

associated to elementary bisets.

Now let ˚C be the preadditive category whose objects are finite groups and morphisms are

Z-generated by elementary morphisms,

• ˚ ResGH : GÑ H

• ˚ IndGH : H Ñ G

• ˚ InfGG{N : G{N Ñ G

• ˚ DefGG{N : GÑ G{N

• ˚ Isopφq : GÑ G1 for φ : GÑ G1

These morphisms are subject to a list of relations given in (1.1.3) of the book. Some examples

are relations dictating composition (i.e. ResGH ˝ResHK “ ResGK), identity morphisms (i.e.

ResGG “ IdG), and commutation (i.e. the Mackey formula).

One may verify that the correspondence Θ : ˚C Ñ C given by sending each group to itself

and removing ˚’s on the elementary morphisms is a functor. Conversely, there is a unique

morphism Ψ : C Ñ ˚C which is the identity on objects, and sends a morphism G Ñ H

defined by a transitive biset pH ˆGq{L to the morphism

˚ IndHD ˝
˚ InfDD{C ˝

˚ Isopφq ˝ ˚ DefBB{A ˝
˚ ResGB

where D “ p1pLq, C “ k1pLq, B “ p2pLq, A “ k2pLq, and φ : B{A Ñ D{C is the canonical

isomorphism from before. One may show this morphism is unique up to conjugation by L

so Ψ is well defined. It is (according to the book) a tedious but straightforward task to

show that Ψ is a functor, and equivalent to checking that any composition of elementary

morphisms in ˚C is a sum of morphisms as above.

Then it is clear that Θ and Ψ are mutual inverse equivalence of categories. In other words,

the elementary morphisms along with the relations presented in 1.1.3 form a presentation

of the biset category C.

Remark 3.1.3. Lemma (2.4.11) shows that there is a functor from the biset category to

the opposite category which maps any object to itself and any morphism u P HomCpG,Hq “

BpH,Gq to uop P BpG,Hq “ HomCoppG,Hq. It is obviously an equivalence of categories (in

fact, an isomorphism).

It is natural to consider other coefficient rings instead of integers:

Definition 3.1.4. Let R be a commutative ring with identity. The category RC is defined

as follows:

• The objects of RC are finite groups.
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• If G and H are finite groups, then HomRCpG,Hq “ R bZ BpH,Gq

• The composition of morphisms in RC is the R-linear extension of the composition in

C.

• For any finite group G, the identity morphism of G in RC is equal to R bZ IdG(????)

This category is a R-linear category, i.e. the set of morphisms in RC are R-modules and the

composition in RC is R-bilinear.
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