2.3: Bisets

Sam Kim Miller

Day 1

2.3 Bisets

Definition 2.3.1. Let G, H be groups. Then an (H, G)-biset is a left $(H \times G^{op})$ -set. Equivalently, an (H, G)-biset U is both a left H-set and a right G-set, such that the H-action and the G-action commute, i.e.

$$(h \cdot u) \cdot g = h \cdot (u \cdot g).$$

Hence we may write $h \cdot u \cdot g$ or hug without ambiguity.

Remark 2.3.2. We can consider disjoint unions or products of bisets as before. If U and V are (H,G)-bisets, then a biset homomorphism $f:U\to V$ satisfies $f(h\cdot u\cdot g)=h\cdot f(u)\cdot g$. If U is a (H,G)-biset, then the set $(H\times G^{op})\setminus U$ is called **the set of** (H,G)-**orbits on** U, denoted $H\setminus U/G$. As before, the biset U is **transitive** if $H\setminus U/G$ has cardinality 1, or equivalently, there exists $(h,g)\in H\times G$ such that $h\cdot u\cdot g=v$.

Example 2.3.3 (Identity Bisets). If G is a group, then the set G is a (G, G)-biset for the left and right actions of G on itself by multiplication. The biset is called **the identity** (G, G) **biset** and is denoted by Id_G . More generally, if H is a subgroup of G, then the set G/H is a $(G, N_G(H)/H)$ -biset, and $H \setminus G$ is a $(N_G(H)/H, G)$ -biset. More precisely for G/H: the action is as follows: for $hH \in N_G(H)/H$ and $g_1, g_2 \in G$,

$$g_1 \cdot g_2 H \cdot hH = g_1 g_2 hH.$$

This is well-defined on the right: this is valid multiplication since hH = Hh, and for $h_1H = h_2H$, we have $h_1h = h_2$ for some $h \in H$. Then,

$$gh_2H = gh_1hH = gh_1H.$$

Lemma 2.3.4. 1. If L is a subgroup of $H \times G$, then the set $(H \times G)/L$ is a transitive (H, G)-biset for the actions defined by:

$$\forall h \in H, \forall (b, a) L \in (H \times G)/L, \forall g \in G, h \cdot (b, a) L \cdot g = (hb, g^{-1}a) L.$$

2. If U is an (H, G)-biset choose a set $[H \setminus U/G]$ of representations of (H, G)-orbits on U. Then there is an isomorphism of (H, G)-bisets

$$U \cong \bigsqcup_{u \in [H \setminus U/G]} (H \times G)/L_u,$$

where $L_u = (H, G)_u$ is the stabilizer of u in $H \times G$, i.e. the subgroup of $H \times G$ defined by

$$(H,G)_u = \{(h,g) \in H \times G : h \cdot u = u \cdot g\}.$$

In particular, any transitive (H, G)-biset is isomorphic to $(H \times G)/L$ for some subgroup L of $H \times G$.

Proof. 1. This statement is a straightforward verification.

2. This statement follows directly from Lemma 2.2.2. One must note that since U is a (H, G)-biset, so the action of $(H \times G)$ on U is given by $(h, g^{-1}) \cdot u = h \cdot u \cdot g^{-1}$, which determines L_u . Equivalently, we could write

$$U \cong \bigsqcup_{u \in [H \setminus U/G]} (H \times G^{op}) / L_u$$

where $L_u = \{(h, g) \in H \times G^{-1} : u \cdot h \cdot g = h\}.$

Example 2.3.5. Let $f: G \to H$ be a group homomorphism. Then the set H has a (H, G)-biset structure given by

$$h \cdot k \cdot g = hkf(g).$$

This biset is isomorphic to $(H \times G)/\Delta_f(G)$, where $\Delta_f(G)$ is the graph of f,

$$\Delta_f(G) = \{ (f(g), g) : g \in G \}.$$

The bijection is given by $\phi: k \mapsto (k,1)\Delta_f(G)$. One verifies the map satisfies the right action:

$$\phi(k \cdot g) = \phi(kf(g)) = (kf(g), 1)\Delta_f(G) = (k, g^{-1})\Delta_f(G) = (k, 1)\Delta_f(G) \cdot g = \phi(k) \cdot g.$$

The map has inverse

$$\psi: (h, g)\Delta_f(G) = (hf(g^{-1}), 1)\Delta_f(G) \mapsto hf(g^{-1})$$

Definition 2.3.6. Let G and H be groups. If U is an (H, G)-biset, then the opposite biset U^{op} is the (G, H)-biset equal to U as a set, with actions defined by

$$\forall g \in G, u \in U, h \in H, g \cdot u \cdot h \text{ (in } U^{op}) = h^{-1}ug^{-1} \text{ (in } U).$$

Example 2.3.7. If H is a subgroup of G, then the map $xH \mapsto Hx^{-1}$ is an isomorphism of $(G, N_G(H)/H)$ -bisets from G/H to $(H \setminus G)^{op}$.

Example 2.3.8 (Opposite Subgroup). If G and H are groups, and $L \leq H \times G$, then the **opposite subgroup** $L^{\diamond} \leq G \times H$ defined by

$$L^{\diamond} = \{ (g, h) \in G \times H : (h, g) \in L \}.$$

With this notation, there is an isomorphism of (G, H)-bisets

$$((H \times G)/L)^{op} \cong (G \times H)/L^{\diamond}, (h, g)L \mapsto (g, h)L^{\diamond}$$

(one must verify this map is well-defined as a map of (G, H)-bisets).

Remark 2.3.9 (Elementary Bisets). Let G be a group. The following bisets are fundamental:

- If $H \leq G$, the set G is an (H, G)-biset in the obvious way. It is denoted by $\operatorname{Res}_{H}^{G}$, where Res means restriction.
- Similarly, G is a (G, H)-biset in the obvious way. It is denoted by Ind_H^G , where Ind_H means induction.
- If $N \leq G$ and H = G/N, the set H is a (G, H)-biset, for the right action of H by multiplication, and the left action of G by projection to H, then left multiplication. It is denoted by Inf_H^G , where Ind means induction.
- Similarly, H is a (H, G)-biset in the same way as before. It is denoted by Def_H^G , where Def means deflation.
- If $f: G \to H$ is a group isomorphism, then the set H is a (H, G)-biset, for the left action of H by multiplication, and the right action of G given by taking the image in f, then multiplying on the right in H. It is denoted by $\operatorname{Iso}(f)$ of Iso_G^H if the isomorphism f is clear from context.

Composition of Bisets

Definition 2.3.11. Let G, H, K be groups, and let U be a (H, G)-biset and V a (K, H)-biset. Define the **composition of** V **and** U to be the set of H-orbits on the right H-action on $V \times U$, where the right action of H is given by

$$(v, u) \cdot h = (v \cdot h, h^{-1} \cdot u).$$

Denote this set by $V \times_H U$, and denote the *H*-orbit of $(v, u) \in V \times U$ by $(v, u) \in V \times_H U$. $V \times_H U$ is a (K, G)-biset for the actions defined by

$$k \cdot (v,_H u) \cdot g = (k \cdot v,_H , u \cdot g).$$

We will verify well-definedness of this action. Let $(v_1,_H, u_1) = (v_2,_H u_2) \in (V \times_H U)$, and let $k \in K, g \in G$. There exists $h \in H$ such that

$$(v_1, u_1) \cdot h = (v_1 \cdot h, h^{-1} \cdot u_1) = (v_2, u_2),$$

so $v_1 \cdot h = v_2$ and $h^{-1} \cdot u_1 = u_2$. Then

$$(k \cdot v_1, u_1 \cdot q) = (k \cdot v_2 \cdot h, h^{-1} \cdot u_2 \cdot q) = (k \cdot v_1, u_2 \cdot q) \cdot h,$$

and hence $(k \cdot v_{1,H} u_1 \cdot g) = (k \cdot v_{2,H} u_2 \cdot g)$ as desired.

Definition 2.3.12. Let G be a group. A **section** (T, S) **of** G is a pair of subgroups of G such that $S \leq T$. The **associated subquotient** of G is the factor group T/S.

Example 2.3.13 (Defres and Indinf). Let G be a group and let (T, S) be a section of G (so $S \leq T \leq G$). Then there is an isomorphism of (G, T/S)-bisets:

$$\operatorname{Ind}_T^G \times_T \operatorname{Inf}_{T/S}^T \xrightarrow{\cong} G/S$$

sending (g, TtS) to gtS. For this reason, the (G, T/S)-biset G/S will be denoted by $Indinf_{T/S}^G$.

Let's verify this! Recall Ind_T^G is G as a (G,T)-biset, and $\operatorname{Inf}_{T/S}^T$ is T/S viewed as a (T,S)-biset, so the definition makes sense. The map is well-defined: since every element of (g,T) is of the form $(gt',(t')^{-1}tS)$ for some $t' \in T$, any choice of representative is sent to $gt'(t')^{-1}tS = gtS$ via the isomorphism. Moreover, the inverse map is given by $gS \mapsto (g,1S)$, and it is straightforward to see that these maps are indeed inverse (since (g,T)). Finally, one verifies that these are (G,T/S)-equivariant maps.

Similarly, there is an isomorphism of (T/S, G)-bisets

$$\operatorname{Def}_{T/S}^T \times_T \operatorname{Res}_T^G \xrightarrow{\cong} S \backslash G,$$

sending $(tS,_T g)$ to Stg. For this reason, the (T/S, G)-biset $S\backslash G$ will be denoted by Defres $_{T/S}^G$. The verification of this is similar to before.

Proposition 2.3.14. Let G, H, K, L be groups.

1. If U is an (H, G)-biset, if V is a (K, H)-biset, and W is an (L, K)-biset, then there is a canonical isomorphism of (L, G)-bisets

$$W \times_K (V \times_H U) \xrightarrow{\cong} (W \times_K V) \times_H U$$

given by $(w_{,k}(v_{,h},u)) \mapsto ((w_{,K}v)_{,H}u)$ for all $(w,v,u) \in W \times V \times U$.

2. If U is an (H, G)-biset and V is a (K, H)-biset, then there is a canonical isomorphism of (G, K)-bisets

$$(V \times_H U)^{op} \xrightarrow{\cong} U^{op} \times_H V^{op}$$

given by $(v, H u) \mapsto (u, H v)$.

3. If U and U' are (H, G)-bisets and if V and V' are (K, H)-bisets, then there are canonical isomorphisms of (K, G)-bisets

$$V \times_H (U \sqcup U') \cong (V \times_H U) \sqcup (V \times_H U')$$

$$(V \sqcup V') \times_H U \cong (V \times_H U) \sqcup (V' \times_H U).$$

The first is defined by

$$(v,_H u) \mapsto \begin{cases} (v,_H u) \in (V \times_H U) & u \in U \\ (v,_H u) \in (V \times_H U') & u \in U' \end{cases}$$

and the second follows similarly.

4. If U is an (H,G)-biset, then there are canonical (H,G)-biset isomorphisms

$$\operatorname{Id}_{H} \times_{H} U \xrightarrow{\cong} U \xleftarrow{\cong} U \times_{G} \operatorname{Id}_{G}$$

given by
$$(h, H u) \mapsto h \cdot u$$
 and $(u, G g) \mapsto u \cdot g$ for all $(h, u, g) \in H \times U \times G$.

The proof of this proposition is fairly straightforward, it's mostly just verifying that the defined maps are equivariant. (Note I added in the definition of the map in part 3.)

Remark 2.3.15. Assertion 1 allows for the unambiguous notation of $W \times_K V \times U$ and $(w,_K v,_H, u)$.

Definition 2.3.16. Let G, H be groups and U a (H, G)-biset.

1. If $L \leq H$, and $u \in U$, define

$$L^u:=\{g\in G:\exists l\in L,l\cdot u=u\cdot g\}\subseteq G.$$

Then L^u is a subgroup of G. In particular, 1^u is the stabilizer of u in G, considering U as a right G-set.

2. If K is a subgroup of G, then set

$${}^{u}K = \{h \in H : \exists k \in K, h \cdot u = u \cdot k\} \subseteq H.$$

Then ${}^{u}K$ is a subgroup of H. In particular, ${}^{u}1$ is the stabilizer of u in H, considering U as a left H-set.

Let's verify that $L^u \leq G$, the other side follows similarly. If $g_1, g_2 \in L^u$, then there exists $l_1, l_2 \in L$ such that $l_1 \cdot u = u \cdot g_1, l_2 \cdot u = u \cdot g_2$. First, $l_1^{-1} \cdot u = u \cdot g_1^{-1}$, so $g_1 \in L^u$. Next note $(l_1 \cdot u) \cdot g_2 = (u \cdot g_1) \cdot g_2$, but by commutativity of bisets, we have:

$$(l_1 \cdot u) \cdot g_2 = (u \cdot g_1) \cdot g_2$$
$$l_1 \cdot (u \cdot g_2) = u \cdot g_1 g_2$$
$$l_1 \cdot (l_2 \cdot u) = u \cdot g_1 g_2$$
$$l_1 l_2 \cdot u = u \cdot g_1 g_2$$

as desired.

Remark 2.3.17. If G is a group, if $U = \text{Id}_G$, and $H \leq G$, then $H^u = u^{-1}Hu$, for $u \in G$, and ${}^uH = uHu^{-1}$. So the above notation is a generalization of the usual notation of conjugation of subgroups.

Let's verify this for H^u . $H^u = \{g \in G : \exists h \in H, h \cdot u = u \cdot g\}$, or equivalently, $h^u = \{g \in G : \exists h \in H, g = u^{-1}hu\}$, which indeed is precisely $u^{-1}Hu$.

Proposition 2.3.18. Let G, H be groups and let U be a (H, G)-biset.

- 1. If $u \in U$ and (T, S) is a section of H, then (T^u, S^u) is a section of G. If (Y, X) is a section of G, then $({}^uY, {}^uX)$ is a section of H.
- 2. In particular, if $u \in U$, then $1^u \triangleleft H^u$ and $u1 \triangleleft uG$, and there is a canonical group isomorphism

$$\overline{c_u}: H^u/1^u \xrightarrow{\cong} {}^uG/{}^u1,$$

defined by $\overline{c_u}(g1^u) = h^u1$, where $g \in H^u$ and $h \in H$ is such that $h \cdot u = u \cdot g$.

- 3. The stabilizer $(H,G)_u$ of u in $H \times G$ is equal to the set of pairs (h,g) in ${}^uG \times H^u$ such that $h^u 1 = \overline{c_u}(g1^u)$.
- 4. The group ${}^{u}1 \times 1^{u}$ is a normal subgroup of $(H,G)_{u}$ and there are canonical group isomorphisms

$${}^uG/{}^u1 \stackrel{\cong}{\longleftarrow} (H,G)_u/({}^u1 \times 1^u) \stackrel{\cong}{\longrightarrow} H^u/1^u$$

defined by $(h,g)(^u1\times 1^u)\mapsto h^u1$ and $(h,g)(^u1\times 1^u)\mapsto g1^u.$

Proof. 1. Let $u \in U$ and (T, S) be a section of H. It is immediate from the definitions that $S^u \leq T^u \leq G$. It remains to show normality. Now if $g \in T^u$ and $g' \in S^u$, then there exist $t \in T$ and $s \in S$ such that $t \cdot u = u \cdot g$ and $s \cdot u = u \cdot g'$. We wish to show $gg'g^{-1} \in S$. We compute:

$$(u \cdot g)g'g^{-1} = (t \cdot u \cdot g')g^{-1} = t(s \cdot u \cdot g^{-1}) = ts(t^{-1} \cdot u),$$

hence by definition, $gg'g^{-1} \in S^u$ since $tst^{-1} \in S$ because $S \leq T$. Thus, $S^u \leq T^u$. The other half of (1) is similar to prove.

2. Assertion 1 implies $1^u \leq H^u$, as (H,1) is clearly a section of G. Now if $g \in H^u$ and $h \in H$ satisfy $h \cdot u = u \cdot g$, then $h \in {}^uG$ by definition. Let $h' \in H$ be another element satisfying $h' \cdot u = u \cdot g = h \cdot u$. Then, we see $(h^{-1}h') \cdot u = u$, so $h' \in h^u 1$ (recalling that ${}^u 1$ is simply the stabilizer). Thus, the map

$$c_u: H^u \to {}^uG/{}^u1, g \mapsto h^u1$$
 where $h \cdot u = u \cdot g$

is well defined. We check it is a group homomorphism: if $g_1, g_2 \in H$, then $c_u(g_1)c_u(g_2) = h_1h_2{}^u1$, where $h_1 \cdot u = u \cdot g_1$ and $h_2 \cdot u = u \cdot g_2$. It follows from prior computations (2.3.16) that $h_1h_2 \cdot u = u \cdot g_1g_2$, so $c_u(g_1g_2) = h_1h_2{}^u1$, as desired.

Moreover c_u is surjective, since for any $h \in {}^uG$, there exists a $g \in G$ with $h \cdot u = u \cdot g$ by definition of uG . Finally, the kernel of c_u is precisely 1^u : $c_u(g) = 1^u1$ if and only if $u = u \cdot g$ if and only if g stabilizes g if and only if $g \in 1^u$, so the induced isomorphism is exactly as desired.

- 3. Recall that $H \times G$ acts on U by $h \cdot u \cdot g = hug^{-1}$. Therefore, the stabilizer is precisely $\{(h,g) \in H \times G : h \cdot u = u \cdot g\}$. On the other hand, $h^u 1 = \overline{c_u}(g1^u)$ if and only if $h \cdot u = u \cdot g$, as desired.
- 4. It follows from the definition of $(H,G)_u$ and (2) that ${}^u1 \times 1^u$ is normal in $(H,G)_u \le H \times G$. The map $(h,g)({}^u1 \times 1^u) \mapsto h^u1$ is well-defined: suppose $(h_1,g_1)({}^u1 \times 1^u) = (h_2,g_2)({}^u1 \times 1^u)$, then $(h_1h_2^{-1},g_1g_2^{-1}) \in ({}^u1 \times 1^u)$. Hence $h_1{}^u1 = h_2{}^u1$, as desired. It is clear the map is a group homomorphism, and the map has inverse defined by $h^u1 \mapsto (h,g)({}^u1 \times 1^u)$, where $\overline{c_u}(g1^u) = h^u1$ (checking this is well-defined is similar to before). Thus, we have the given isomorphism on the left. The isomorphism on the right follows similarly.

Day 2

Definition 2.3.19. Let G, H, K be groups. If $L \leq H \times G$, and if $M \leq K \times H$, set

$$M * L = \{(k, g) \in K \times G : \exists h \in H, (k, h) \in M \text{ and } (h, g) \in L\}.$$

M*L is a subgroup of $K\times G$ - this is a straightforward verification.

Lemma 2.3.20. Let G, H, K be groups, let U be a (H, G)-biset and V a (K, H)-biset. Then if $u \in U$ and $v \in V$, the stabilizer of (v, H, u) in $K \times G$ is equal to

$$(K,G)_{(v,H^u)} = (K,H)_v * (H,G)_u.$$

Proof. Suppose $(k,g) \in (K,G)_{(v,Hu)}$, that is, it satisfies $k \cdot (v,Hu) = (v,Hu) \cdot g$. Then (kv,Hu) = (v,Hug), so there exists some $h \in H$ satisfying $(kv,Hu) = (v,Hug) \cdot h = (vh,Hh^{-1}ug)$, so kv = vh and hu = ug. So $(k,h) \in (K,H)_v$ and $(h,g) \in (H,G)_u$, and thus $(k,g) \in (K,H)_v * (H,G)_u$.

Conversely, if $(k, g) \in (K, H)_v * (H, G)_u$, so there exists $h \in H$ satisfying kv = vh and hu = ug. Thus,

$$k(v, H u) = (kv, H u) = (vh, H u) = (v, H ug) = (v, H u)g,$$

and so $(k,g) \in (K,G)_{(v,H^u)}$ as desired.

Definition 2.3.21. Let G, H be groups and $L \leq H \times G$. Define:

$$p_1(L) = \{h \in H : \exists g \in G, (h, g) \in L\}$$

$$p_2(L) = \{g \in G : \exists g \in G, (h, g) \in L\}$$

$$k_1(L) = \{h \in H : (h, 1) \in L\}$$

$$k_2(L) = \{g \in G : (1, g) \in L\}$$

$$g(L) = L/(k_1(L) \times k_2(L))$$

With this notation, the stabilizer in $H \times G$ of the element u = (1, 1)L of the biset $(H \times G)/L$ is obviously the group L.

The group H^u as defined previously is equal to the projection $p_2(L)$ of L on G: $H^u := \{g \in G : \exists h \in H, h \cdot (1,1)L = (1,1)L \cdot g\}$, and the equality only holds when $(h,g) \in L$ (remember $(1,1)L \cdot g = (1,g^{-1})L$). Similarly ${}^uG = p_1(L)$.

The stabilizer ${}^{u}1$ of u in H is the group $k_{1}(L)$ (this follows similarly as before) and the stabilizer 1^{u} of u in G is the group $k_{2}(L)$.

The isomorphism $\overline{c_u}$ from Prop (2.3.18) is the map:

$$c_u: p_2(L)/k_2(L) \to p_1(L)/k_1(L), \quad gk_2(L) \mapsto hk_1(L) \text{ with } (h,g) \in L.$$

Prop (2.3.18.4) implies $(k_1(L) \times k_2(L)) \leq L$, and there are canonical group isomorphisms:

$$p_1(L)/k_1(L) \cong q(L) \cong p_2(L)/k_2(L).$$

Lemma 2.3.22. Let G, H, K be groups. Let $L \leq H \times G$ and $M \leq K \times H$.

1. There are exact sequences of groups:

$$1 \to k_1(M) \times k_2(L) \xrightarrow{i} M * L \xrightarrow{\theta} (p_2(M) \cap p_1(L)) / (k_2(M) \cap k_1(L)) \to 1$$
$$1 \to k_1(M) \to k_1(M * L) \to (p_2(M) \cap k_1(L)) / (k_2(M) \cap k_1(L)) \to 1$$
$$1 \to k_2(L) \to k_2(M * L) \to (k_2(M) \cap p_1(L)) / (k_2(M) \cap k_1(L)) \to 1$$

2. There are inclusions of subgroups

$$k_1(M) \subseteq k_1(M * L) \subseteq p_1(M * L) \subseteq p_1(M)$$

 $k_2(L) \subseteq k_2(M * L) \subseteq p_2(M * L) \subseteq p_2(L)$

Proof. 1. First note that $k_1(M) \times k_2(L) \leq M * L$, since any $h \in k_1(M)$ satisfies $(h, 1) \in M$ and $g \in k_2(L)$ satisfies $(1, g) \in L$. We set i to be the inclusion, it is obviously injective.

Let $(k,g) \in M * L$, so there exists $h \in H$ such that $(k,h) \in M$ and $(h,g) \in L$. Then, $h \in p_2(M)$ and $h \in p_1(L)$, and thus $h \in p_2(M) \cap p_1(L)$. Now suppose $h' \in H$ also satisfies $(k,h') \in M$ and $(h',g) \in L$. then $(1,h^{-1}h') \in M$ and $(h^{-1}h',1) \in L$, so $h^{-1}h' \in k_2(M)$ and $h^{-1}h' \in k_1(L)$, and hence $h^{-1}h' \in k_2(M) \cap k_1(L)$. Therefore, the map $\theta : (k,g) \mapsto h(k_2(M) \cap k_1(L))$ is a well-defined map from M * L to $(p_2(M) \cap p_1(L))/(k_2(M) \cap k_1(L))$. It is straightforward to check it is a group homomorphism.

This morphism is surjective: if $h \in p_2(M) \cap p_1(L)$, then there exists a $k \in K$ for which $(k, h) \in M$ and there exists $g \in G$ such that $(h, g) \in L$. So $(k, g) \in M * L$, and $\theta(k, g) = h(k_2(M) \cap k_1(L))$.

We next check exactness. If $k \in k_1(M)$ and $g \in k_2(L)$, then by definition $(k, 1) \in M$ and $(1, g) \in L$. So $\theta(k, g) = 1(k_2(M) \cap k_1(L))$, i.e. $k_1(M) \times k_2(L) \leq \ker \theta$. Conversely, suppose $(k, g) \in \ker \theta$. Then there exists $h \in k_2(M) \cap k_1(L)$ for which $(k, h) \in M$ and $(h, g) \in L$. Since $h \in k_2(M)$, $(1, h) \in M$, and $(k, 1) = (k, h)(1, h)^{-1} \in M$, so $k \in k_1(M)$. Similarly, $(h, 1) \in L$ and $(1, g) = (h, g)(h, 1)^{-1} \in L$, so $g \in k_2(L)$. Thus, $(k, g) \in k_1(M) \times k_2(L)$, and we conclude that $\ker \theta = k_1(M) \times k_2(L)$. Thus, the first sequence is exact.

Now an element $k \in K$ is in $k_1(M * L)$ if and only if there exists $h \in H$ for which $(k,h) \in M$ and $(h,1) \in L$. In this case, $h \in p_2(M) \cap k_1(L)$. Therefore, the image of the group $k_1(M * L) \times 1$ by the morphism θ defined above is precisely $(p_2(M) \cap k_1(L))$.

 $k_1(L)$ / $(k_2(M) \cap k_1(L))$. Moreover, its intersection with the kernel $k_1(M) \times k_2(L)$ of θ is $k_1(M) \times 1$. This is sufficient to define the second exact sequence. The third follows similarly.

2. It is obvious that $k_1(M*L) \subseteq p_1(M*L)$ from the definitions. Now if $k \in k_1(M)$, then $(k,1) \in M$ and $(1,1) \in L$, so $k \in k_1(M*L)$. Finally, if $k \in p_1(M*L)$, then there exists $h \in H, g \in G$ for which $(k,h) \in M$ and $(h,g) \in L$, so in particular, $k \in p_1(M)$. The second line follows similarly.

Remark 2.3.23 (Factorization of Transitive Bisets). If G, H are groups, then by Lemma (2.3.4), any (H, G)-biset is a disjoint union of transitive (H, G)-bisets, and a transitive (H, G)-biset is isomorphic to $(H \times G)/L$ for some $L \leq H \times G$ (recall L is the stabilizer of some $u \in U$ in $H \times G$).

Lemma 2.3.24 (Mackey formula for bisets). Let G, H, K be groups. If $L \leq H \times G$ and $M \leq K \times H$, then there is an isomorphism of (K, G)-bisets

$$((K \times H)/M) \times_H ((H \times G)/L) \cong \bigsqcup_{h \in [p_2(M) \setminus H/p_1(L)]} (K \times G)/(M *^{(h,1)}L),$$

where $[p_2(M)\backslash H/p_1(L)]$ is a set of representatives of double cosets.

Proof. Set $V := (K \times H)/M$ and $U = (H \times G)/L$. We verify that the map:

$$\phi: K((k,h)M_{,H}(h',g)L)G \mapsto p_2(M)(h^{-1}h')p_1(L)$$

is a bijection of biset orbits between $K \setminus (V \times_H U)/G \to p_2(M) \setminus H/p_1(L)$.

First to verify the map is well-defined, we must check two things, first that the choice of representative of the $V \times_H U$ term does not matter, and second, that two elements in the same (K, G)-orbit are sent to the same orbit. First note if

$$((k_1, h_1)M,_H(h'_1, g_1)L) = ((k_2, h_2)M,_H(h'_2, g_2)L),$$

then there exists $h \in H$ for which

$$((k_1, h_1)M, (h'_1, g_1)L) \cdot h = ([(k_1, h_1)M] \cdot h, h^{-1} \cdot [(h'_1, g_1)L])$$

$$= ((k_1, h^{-1}h_1)M, (h^{-1}h'_1, g_1)L)$$

$$= ((k_2, h_2)M, (h'_2, g_2)L)$$

so $h^{-1}h_1 = h_2$ and $h^{-1}h'_1 = h'_2$, and it is a quick check from there that ϕ is independent of choice of representative in $V \times_H U$. Moreover, it is clear that any two elements in the same orbit are sent to the same orbit, i.e. ϕ is invariant with respect to the left K and right G

actions, since the K and G actions do not affect the H-terms.

To see that the map is a bijection, the inverse map is given by $\phi^{-1}: p_2(M)\backslash H/p_1(L) \to K\backslash (V\times_H U)/G$, given by

$$p_2(M)hp_1(L) \mapsto K((1,1)M_{,H}(h,1)L)G.$$

First to check that the map is well-defined we check that if h_1 and h_2 live in the same orbit, then they are sent to the same orbit. If $p_2(M)h_1p_1(L) = p_2(M)h_2p_1(L)$, there exist $h_M \in p_2(M), h_L \in p_1(L)$ such that $h_1 = h_M h_2 h_L$, and $(h_L, g) \in L$ and $(k, h_M) \in M$ for some $k \in K, g \in G$. Then

$$\begin{aligned} p_2(M)h_1p_1(L) &\mapsto K\big((1,1)M,_H(h_1,1)L\big)G = K\big((k^{-1},h_M^{-1})M,_H(h_1h_L,g)L\big)G \\ &= K\big((k^{-1},h_M^{-1})M \cdot h_M^{-1},_H h_M(h_1h_L,g)L\big)G \\ &= K\big((k^{-1},1)M,_H(h_Mh_1h_L,g)L\big)G \\ &= K\big((1,1)M,_H(h_2,1)L\big)G \longleftrightarrow p_2(M)h_2p_1(L) \end{aligned}$$

Thus the map is well-defined. Finally, it is straightforward to see that these are indeed inverse maps, so we first conclude that we have an isomorphism of biset orbits.

Now, we have from (2.3.4) a isomorphism of (K, G)-bisets:

$$((K \times H)/M) \times_H ((H \times G)/L) \cong \bigsqcup_{x \in [K \setminus (V \times_H U)/G]} (K \times G)/(K, G)_x,$$

however by the isomorphism we may rewrite this as:

$$((K \times H)/M) \times_H ((H \times G)/L) \cong \bigsqcup_{u \in [p_2(M) \setminus H/p_1(L)]} (K \times G)/(K,G)_{\phi^{-1}(u)}.$$

Finally, we must compute $(K,G)_{\phi^{-1}(u)}$, i.e. the stabilizer of $((1,1)M,_H(h,1)L)$ in $K \times G$. It is clear that M is the stabilizer of (1,1)M. Moreover, it straightforward to verify that $^{(h,1)}L = (h,1)L(h^{-1},1)$ is the stabilizer of (h,1)L, so finally by (2.3.20) we conclude $(K,G)_{\phi^{-1}(u)} = M * ^{(h,1)}L$ and the result follows.

The book calls this verification "easy to check." Ha. Ha.

Lemma 2.3.25 (Goursat Lemma). Let G, H be groups.

1. If (D, C) is a section of H and (B, A) is a section of G such that there exists a group isomorphism $f: B/A \to D/C$ then

$$L_{(D,C),f,(B,A)} = \{(h,g) \in H \times G : h \in D, g \in B, hC = f(gA)\}$$

is a subgroup of $H \times G$.

- 2. Conversely, if L is a subgroup of $H \times G$, then there exists a unique section (D, C) of H, a unique section (B, A) of G, and a unique group isomorphism $f : B/A \to D/C$ such that $L = L_{(D,C),f,(B,A)}$.
- *Proof.* 1. This is an easy verification, all that is required to check is that the subgroup is indeed a subgroup.
 - 2. We assert that the choices:

$$D = p_1(L), \qquad B = p_2(L),$$

$$C = k_1(L), \qquad A = k_2(L),$$

and $f: B/A \to D/C$ determined by f(bA) = dC when $(d,b) \in L$ satisfy $L = L_{(D,C),f,(B,A)}$ and are unique. First, it follows that these choices form sections of H and G, with isomorphic associated subquotients from (2.3.18) (recall that u = (1,1)L), and moreover, the map f corresponds exactly to the map $\overline{c_u}$ in (2.3.18.3), so it is an isomorphism. They correspond since $(d,b) \in L$ if and only if $d \cdot (1,1)L = (1,1)L \cdot b$. Now it is clear from definitions that $L_{(D,C),f,(B,A)} = L$.

It follows that this choice is unique, since $p_1(L_{(D,C),f,(B,A)}) = D$, $p_2(L_{(D,C),f,(B,A)}) = B$, et cetera. So if we have $L = L_{(D,C),f,(B,A)} = L_{(D',C'),f',(B',A')}$, it immediately follows that A = A', B = B', and so on.

The next result in some sense allows us to consider the 5 elementary bisets as "essential," as in, every biset $(H \times G)/L$ can be decomposed as a composition of those 5 bisets.

Theorem 2.3.26. Let G and H be groups. If $L \leq H \times G$, let (D, C) and (B, A) be sections of H, G respectively and let f be the group isomorphism $B/A \xrightarrow{\cong} D/C$ such that $L = L_{(D,C),f,(B,A)}$. Then there is an isomorphism of (H, G)-bisets:

$$(H \times G)/L \cong \operatorname{Ind}_D^H \times_D \operatorname{Inf}_{D/C}^D \times_{D/C} \operatorname{Iso}(f) \times_{B/A} \operatorname{Def}_{B/A}^B \times_B \operatorname{Res}_B^G$$

Proof. Define $\Lambda = (H \times G)/L$ and let Γ denote the right-hand side of the proposed isomorphism. Define the map $\varphi : \Lambda \to \Gamma$ by

$$\varphi: (h,g)L \mapsto (h,_D C,_{D/C} C,_{B/A} A,_B g^{-1})$$

(note that the middle terms are all identity cosets) and $\psi: \Gamma \to \Lambda$ by

$$\psi: (h,_D, dC,_{D/C}, d'C, B/A, bA,_B g) \mapsto (hdd', g^{-1}b^{-1})L,$$

for $h \in H, d, d' \in D, b \in B, g \in G$. First we verify that these maps are well defined: suppose $(h, g) \in H \times G$ and $(d, b) \in L$. Note f satisfies f(bA) = dC by the previous lemma. Thus

$$\varphi((hd, gb)L) = (hd_{,D} C_{,D/C} C_{,B/A} A_{,B} b^{-1} g^{-1})$$

$$= (h_{,D} dC_{,D/C} C_{,B/A} A b^{-1}_{,B} g^{-1})$$

$$= (h_{,D} C(dC)_{,D/C}, C_{,B/A} (b^{-1}A)A_{,B} g^{-1})$$

$$= (h_{,D} C_{,D/C} (dC)C(bA)^{-1}_{,B/A} A_{,B} g^{-1})$$

However, since f(bA) = dC, we see that $(dC)C(bA)^{-1} = C \in \text{Iso}(f)$, and hence, φ is indeed well-defined. Similarly, we check ψ is well-defined. Let $x \in D, yC \in D/C, zA \in B/A, y' \in f(zA), t \in B$. We verify that the image of ψ of the element

$$E = (hx_{,D} x^{-1} dCy_{,D/C} y^{-1} d'Cy'_{,B/A} z^{-1} bAt, t^{-1}g) \in \Gamma$$

should be equal to $\psi(h_{D}, dC_{D/C}, d'C_{B/A}, bA_{B}g)$. We compute:

$$\begin{split} \psi(E) &= (hxx^{-1}dyy^{-1}d'y', g^{-1}tt^{-1}b^{-1}z)L \\ &= (hdd'y', g^{-1}b^{-1}z)L \\ &= (hdd', g^{-1}b^{-1})L \end{split}$$

The final line comes from the fact that $(y',z) \in L$, since f(zA) = y'C, implying $(y',z) \in L_{(D,C),f,(B,A)} = L$. Thus both maps are indeed well-defined. It is straightforward to check that these maps are (H,G)-equivariant, so they are indeed maps of bisets. Finally, we check that they are inverse. It is obvious that $\psi \circ \varphi = \mathrm{Id}_{\Lambda}$. We compute:

$$\varphi \circ \psi \left((h,_{D}, dC,_{D/C} d'C,_{B/A} bA,_{B} g) \right) = \varphi \left((hdd', g^{-1}b^{-1})L \right) = (hdd',_{D} C,_{D/C} C,_{B/A} A,_{B} bg)$$

$$= (h,_{D} dd'C,_{D/C} C,_{B/A} A(bA),_{B} g)$$

$$= (h,_{D} (dC)(d'C),_{D/C} C,_{B/A} bA,_{B} g)$$

$$= (h,_{D} dC,_{D/C} d'C,_{B/A} bA,_{B} g)$$

as desired. \Box

In short, any transitive (H, G)-biset can be uniquely realized as the composition of these 5 fundamental bisets.

Day 3

2.5 The Burnside Ring (cont.)

First recall we have a construction: if G is a group and X is a G-set, we construct the (G, G)-biset \tilde{X} by setting it to be the set $G \times X$ with biset structure given by

$$a \cdot (g, x) \cdot b = (agb, b^{-1}x)$$

Let us recall the maps given in (2.5.10). Let G, H be groups and U a (H, G)-biset. If X is a H-set, then:

$$\alpha_{U,X}: \widetilde{X} \times_H U \to U \times_G (U^{op} \times_H X)$$
$$((h, x)_{,H} u) \to \left(hu_{,G} (1, (u_{,H} x))\right)$$

is well-defined. Additionally, if Y is a G-set then

$$\beta_{U,Y}: \widetilde{U \times_G Y} \to U \times_G \widetilde{Y} \times_G U^{op}$$
$$(h, (u, Gy)) \mapsto (hu, G(1, y), Gu)$$

is well defined. If U is left-free then α, β are both injective, and if U is left-transitive then α, β are both surjective, regardless of X and Y.

Corollary 2.5.1. Let G be a group and let $H \leq G$.

1. Let X be a G-set. Then there is an isomorphism of (G, H)-bisets

$$\tilde{X} \times_G \operatorname{Ind}_H^G \cong \operatorname{Ind}_H^G \times_H \widetilde{\operatorname{Res}_H^G} X$$

and an isomorphism of (H, G)-bisets

$$\operatorname{Res}_H^G \times_G \tilde{X} \cong \widetilde{\operatorname{Res}_H^G} X \times_H \operatorname{Res}_H^G$$

2. Let Y be an H-set. Then there is an isomorphism of (G, G)-bisets

$$\operatorname{Ind}_H^G \times_H \tilde{Y} \times_H \operatorname{Res}_H^G \cong \widetilde{\operatorname{Ind}_H^G Y}$$

Proof. Note that $\operatorname{Res}_H^G X$ refers to the left G-set $\operatorname{Res}_H^G \times_H X$ and $\operatorname{Ind}_H^G Y$ refers to the left G-set $\operatorname{Ind}_H^G \times_H Y$.

The first isomorphism in part 1 and the isomorphism in part 2 follow from the previous proposition, by switching G and H and letting U be the (G, H)-biset Ind_H^G . Recall Ind_H^G is the set G itself. It is obvious that Ind_H^G is left-free and left-transitive, so α and β are isomorphisms. Moreover, it is clear that $(\operatorname{Ind}_H^G)^{op} \cong \operatorname{Res}_H^G$. Now, the first isomorphism in part 1 follows via the map α and part 2 follows from the map β .

Now, note that it is clear that given bisets $A, B, A \cong B$ if and only if $A^{op} \cong B^{op}$. Using this fact, the second isomorphism in part 1 follows from the first isomorphism, the fact that $(V \times_H U)^{op} \cong U^{op} \times_H V^{op}$ for compatible bisets U, V, and the observation that $\tilde{X} \cong \tilde{X}^{op}$. Most of these facts are clear or have been proven before, but the last isomorphism needs verifying. We construct a biset map $\phi: \tilde{X} \to \tilde{X}^{op}$ by $(g, x) \mapsto (g^{-1}, gx)$. We verify that this map is (G, G)-equivariant:

$$a \cdot \phi(g, x) \cdot b = a \cdot (g^{-1}, gx) \cdot b$$

$$= (b^{-1}g^{-1}a^{-1}, agx)$$

$$= ((agb)^{-1}, agx)$$

$$= ((agb)^{-1}, (agb)b^{-1}g)$$

$$= \phi(agb, b^{-1}g)$$

$$= \phi(a \cdot (g, x) \cdot b)$$

This map has inverse $\phi^{-1}: \tilde{X}^{op} \to \tilde{X}$ also given by $(g, x) \mapsto (g^{-1}, gx)$. Equivariance follows similarly as before, and it is straightforward to compute that these maps are inverse. Thus the bisets are isomorphic, as desired.

Corollary 2.5.2. Let G be a group.

1. Let N be a normal subgroup of G, and X be a (G/N)-set. Then there is an isomorphism of (G/N, G)-bisets

$$\tilde{X} \times_{G/N} \operatorname{Def}_{G/N}^G \cong \operatorname{Def}_{G/N}^G \times_G \widetilde{\operatorname{Inf}_{G/N}^G} X,$$

and an isomorphism of (G, G/N)-bisets

$$\operatorname{Inf}_{G/N}^G \times_{G/N} \tilde{X} \cong \operatorname{Inf}_{G/N}^G X \times_G \operatorname{Inf}_{G/N}^G.$$

2. Let N be a normal subgroup of G and Y be a G-set. Then there is an isomorphism of (G/N,G/N)-bisets

$$\operatorname{Def}_{G/N}^G \times_G \widetilde{Y} \times_G \operatorname{Inf}_{G/N}^G \cong \widetilde{\operatorname{Def}_{G/N}^G} Y$$

Proof. The proof follows the same as the previous one, now using the assignment H = G/N and $U = \mathrm{Def}_{G/N}^G$.

We conclude the section by looking at a proposition which considers the case when G and H have coprime order. We first revisit a necessary fact:

Lemma 2.5.3. Let G be a group and $[s_G]$ a set of representatives of conjugacy classes of subgroups of G and H. Then B(G) is a free abelian group with basis $\mathcal{B} = \{[G/S] : S \in [s_G]\}$.

Proof. First, recall from (2.2.2) that every G-set X can be written (up to isomorphism) as

$$X = \bigsqcup_{K \in [s_G]} a_K(X)G/K$$

where $a_K(X) \in \mathbb{N}$. Therefore, \mathcal{B} is a spanning set of B(G). It remains to show \mathcal{B} is linearly independent. Let us suppose we have a relation

$$0 = \sum_{S \in [s_G]} a_S[G/S]$$

with each $a_S \in \mathbb{Z}$. Denote $[s_G]^+$ to be the subset of $S \in [s_G]$ with $a_S > 0$ and $[s_G]^-$ to be the subset with $a_S < 0$. If we can show these sets are empty, we are done. We can rearrange terms so all coefficients are positive as follows:

$$\sum_{S \in [s_G]^+} a_S[G/S] = \sum_{T \in [s_G]^-} (-a_T)[G/T]$$

Now each sum is the image of some G-set in B(G) as follows:

$$X = \bigsqcup_{S \in [s_G]^+} a_S G/S, \qquad Y = \bigsqcup_{T \in [s_G]^-} (-a_T) G/T.$$

Since their images in B(G) are equal, $X \cong Y$. Now, suppose for contradiction that $[s_G]^+$ or $[s_G]^-$ is nonempty. Then, consider the poset of $[s_G]^+ \cup [s_G]^-$ ordered by inclusion up to conjugation. Since these sets are finite, some maximal element H must exist. Suppose without loss of generality $H \in [s_G]^+$, then $|X^H| = a_S[G:H]$ by maximality. However, by (2.4.5), then $|Y^H| = a_S[G:H] > 0$. Since $H \in [s_G]^+$, $H \notin [s_G]^-$, but the only sets in \mathcal{B} fixed by H are [G/H'] with $H \leqslant H'$, contradicting maximality. Thus $[s_G]^+ = [s_G]^- = \emptyset$, as desired.

Proposition 2.5.4. Let G, H be finite groups.

1. If X is a G-set and Y is an H-set, then $X \times Y$ is a $(G \times H)$ -set with action defined componentwise. The correspondence $(X,Y) \mapsto X \times Y$ induces a bilinear map $B(G) \times B(H) \to B(G \times H)$ and hence a homomorphism

$$\pi: B(G) \otimes_{\mathbb{Z}} B(H) \to B(G \times H)$$

which is an injective ring homomorphism preserving identity elements. If G and H have coprime order, this map is an isomorphism.

2. If U is a (G, G)-biset and V is an (H, H)-biset, then $U \times V$ is a $(G \times H, G \times H)$ -biset for the structure given again by componentwise multiplication, i.e.

$$(g,h) \cdot (u,v) \cdot (g',h') = (gug',huh').$$

The correspondence $(U, V) \mapsto U \times V$ induces a bilinear map $B(G, G) \times B(H, H) \rightarrow B(G \times H, G \times H)$, hence a linear map

$$\pi_2: B(G,G) \otimes_{\mathbb{Z}} B(H,H) \to B(G \times H,G \times H)$$

which is an injective ring homomorphism preserving identity elements. If G and H have coprime orders, then this map is an isomorphism.

Proof. 1. The correspondence $\tilde{\pi}(X,Y) \mapsto X \times Y$ induces an obvious map $B(G) \times B(H) \to B(G \times H)$ which is bilinear, since $(X_1 \sqcup X_2) \times Y \cong (X_1 \times Y) \sqcup (X_2 \times Y)$, and similarly in the second argument. Thus by the universal property of tensor products, a linear map $\pi: B(G) \otimes_{\mathbb{Z}} B(H) \to B(G \times H)$ is induced. We verify that π respects the multiplicative structure: we must show that if X, X' are G-sets and Y, Y' are H-sets, then $\tilde{\pi}(X,Y) \times \tilde{\pi}(X',Y') \cong \tilde{\pi}((X \times X'), (Y \times Y'))$. This follows since

$$(X \times Y) \times (X' \times Y') \cong (X \times X') \times (Y \times Y')$$

is an obvious isomorphism of $(G \times H)$ -sets, so their images in the induced map are equal. Hence π is a ring homomorphism. Finally, π is unital, since if X is a G-set of cardinality 1 and Y is a H-set of cardinality 1, $X \times Y$ is a $(G \times H)$ -set of cardinality 1.

Let $[s_G]$ and $[s_H]$ denote sets of representatives of conjugacy classes of subgroups of G and H respectively. Then B(G) is free abelian with basis $\{[G/S]: S \in [s_G]\}$, and B(H) is free abelian with basis $\{[H/T]: T \in [s_H]\}$. Then, $B(G) \otimes_{\mathbb{Z}} B(H)$ is free abelian with basis $\mathcal{B} = \{[G/S] \otimes [H/T]: (S,T) \in [s_G] \times [s_H]\}$.

It is clear that $\pi([G/S] \otimes [H/T]) = [(G \times H)/(S \times T)]$. Moreover, the subgroups $S \times T$ lie in different conjugacy classes of subgroups of $G \times H$, where $(S, T) \in [s_G] \times [s_H]$, so $\pi(\mathcal{B})$ is a subset of a \mathbb{Z} -basis of $B(G \times H)$. Thus π is injective.

Recall if G, H are groups, and $L \leq G \times H$, we defined:

$$p_1(L) = \{h \in H : \exists g \in G, (h, g) \in L\}$$

$$p_2(L) = \{g \in G : \exists g \in G, (h, g) \in L\}$$

$$k_1(L) = \{h \in H : (h, 1) \in L\}$$

$$k_2(L) = \{g \in G : (1, g) \in L\}$$

$$g(L) = L/(k_1(L) \times k_2(L))$$

Now if G, H have coprime orders and $L \leq G \times H$, then q(L) = 1, since $q(L) \cong p_1(L)/k_1(L) \cong p_2(L)/k_2(L)$. From this it is clear to see that $L = k_1(L) \times k_2(L) = p_1(L) \times p_2(L)$. Hence, if $L \leq G \times H$, then $L = S \times T$ for some subgroups $S \leq G, T \leq H$. Since a \mathbb{Z} -basis of $B(G \times H)$ is $\mathcal{B}' = \{[G \times H/L] : L \in [s_{G \times H}]\}$, it follows that $\pi(\mathcal{B}) = \mathcal{B}'$ and hence π is surjective, and therefore an isomorphism.

2. Set $G_2 = G \times G^{op}$ and $H_2 = H \times H^{op}$. Part 1 gives a linear map:

$$\pi: B(G_2) \otimes_{\mathbb{Z}} B(H_2) \to B(G_2 \times H_2),$$

and $G_2 \times H_2 \cong (G \times H)_2 = (G \times H) \times (G \times H)^{op}$. Composing this gives a map $B(G_2) \otimes_{\mathbb{Z}} B(H_2) \to B((G \times H)_2)$. It follows from the definition of bisets that we may identify this map with the map

$$\pi_2: B(G,G) \otimes_{\mathbb{Z}} B(H,H) \to B(G \times H,G \times H)$$

since $B(G_2) = B(G, G)$ and so on. It follows from part 1 that π_2 is injective, and an isomorphism if G and H have coprime orders.

It remains to verify that π_2 is a ring homomorphism under biset multiplication. We wish to show that if U, U' are (G, G)-bisets and V, V' are (H, H)-bisets, then $\pi_2(U \times_G U', V \times_H V') = \pi(U, V) \cdot \pi(U', V')$. However, there is an isomorphism of $(G \times H, G \times H)$ -bisets given by:

$$(U \times_G U') \times (V \times_H V') \cong (U \times V) \times_{G \times H} (U' \times V')$$
$$((u,_G u'), (v,_H v')) \mapsto ((u,v),_{G \times H} (u',v'))$$

and multiplicity of π_2 follows. Finally it is obvious that the map sends identity bisets to identity bisets.

3.1 The Biset Category of Finite Groups

Definition 3.1.1. The biset category \mathcal{C} of finite groups is the category defined as follows:

- The objects are finite groups.
- If G and H are finite groups, $\operatorname{Hom}_{\mathcal{C}}(G,H) = B(H,G)$.
- If G, H, K are finite groups, and $u \in \operatorname{Hom}_{\mathcal{C}}(G, H)$ and $v \in \operatorname{Hom}_{\mathcal{C}}(H, K)$, then $v \circ u := v \times_H u$.
- For any finite group G, the identity morphism of G in \mathcal{C} is $[\mathrm{Id}_G]$.

Remark 3.1.2. It follows that C is preadditive (in the sense of MacLane) - the morphism sets are abelian groups and composition is bilinear.

If G and H are finite groups, then any morphism from G to H in C is a linear combination with integral coefficients of morphism of the form $[(H \times G)/L]$ where $L \leq H \times G$. From (2.3.26) any such morphism factors as follows:

$$G \xrightarrow{\operatorname{Res}_B^G} B \xrightarrow{\operatorname{Def}_{B/A}^H} B/A \xrightarrow{\operatorname{Iso}(f)} D/C \xrightarrow{\operatorname{Inf}_{D/C}^D} D \xrightarrow{\operatorname{Ind}_D^H} H$$

In other words C is generated as a preadditive category by the five types of morphisms above, associated to elementary bisets.

Now let ${}^*\mathcal{C}$ be the preadditive category whose objects are finite groups and morphisms are \mathbb{Z} -generated by elementary morphisms,

- * $\operatorname{Res}_H^G : G \to H$
- * $\operatorname{Ind}_H^G : H \to G$
- * $\operatorname{Inf}_{G/N}^G : G/N \to G$
- * $\operatorname{Def}_{G/N}^G : G \to G/N$
- * Iso $(\phi): G \to G'$ for $\phi: G \to G'$

These morphisms are subject to a list of relations given in (1.1.3) of the book. Some examples are relations dictating composition (i.e. $\operatorname{Res}_H^G \circ \operatorname{Res}_K^H = \operatorname{Res}_K^G$), identity morphisms (i.e. $\operatorname{Res}_G^G = \operatorname{Id}_G$), and commutation (i.e. the Mackey formula).

One may verify that the correspondence $\Theta: {}^*\mathcal{C} \to \mathcal{C}$ given by sending each group to itself and removing *'s on the elementary morphisms is a functor. Conversely, there is a unique morphism $\Psi: \mathcal{C} \to {}^*\mathcal{C}$ which is the identity on objects, and sends a morphism $G \to H$ defined by a transitive biset $(H \times G)/L$ to the morphism

*
$$\operatorname{Ind}_D^H \circ \operatorname{Inf}_{D/C}^D \circ \operatorname{Iso}(\phi) \circ \operatorname{Def}_{B/A}^B \circ \operatorname{Res}_B^G$$

where $D = p_1(L)$, $C = k_1(L)$, $B = p_2(L)$, $A = k_2(L)$, and $\phi : B/A \to D/C$ is the canonical isomorphism from before. One may show this morphism is unique up to conjugation by L so Ψ is well defined. It is (according to the book) a tedious but straightforward task to show that Ψ is a functor, and equivalent to checking that any composition of elementary morphisms in ${}^*\mathcal{C}$ is a sum of morphisms as above.

Then it is clear that Θ and Ψ are mutual inverse equivalence of categories. In other words, the elementary morphisms along with the relations presented in 1.1.3 form a **presentation** of the biset category C.

Remark 3.1.3. Lemma (2.4.11) shows that there is a functor from the biset category to the opposite category which maps any object to itself and any morphism $u \in \text{Hom}_{\mathcal{C}}(G, H) = B(H, G)$ to $u^{op} \in B(G, H) = \text{Hom}_{\mathcal{C}^{op}}(G, H)$. It is obviously an equivalence of categories (in fact, an isomorphism).

It is natural to consider other coefficient rings instead of integers:

Definition 3.1.4. Let R be a commutative ring with identity. The category $R\mathcal{C}$ is defined as follows:

• The objects of RC are finite groups.

- If G and H are finite groups, then $\operatorname{Hom}_{R\mathcal C}(G,H)=R\otimes_{\mathbb Z} B(H,G)$
- The composition of morphisms in RC is the R-linear extension of the composition in C.
- For any finite group G, the identity morphism of G in $R\mathcal{C}$ is equal to $R \otimes_{\mathbb{Z}} \mathrm{Id}_{G}(????)$

This category is a R-linear category, i.e. the set of morphisms in $R\mathcal{C}$ are R-modules and the composition in $R\mathcal{C}$ is R-bilinear.