# **Endotrivial complexes** (and the trivial source ring)

Sam K. Miller 1

<sup>1</sup>University of California, Santa Cruz

September 12, 2023

#### Conventions & Notation:

- lacksquare G is a finite group.
- lacksquare p is a prime.
- $\blacksquare$  k is a field of characteristic p.
- $s_p(G)$  denotes the set of all *p*-subgroups of G.
- All *kG*-modules are finitely generated.
- $lacktriangledown_{kG}$  mod denotes the category of all finitely generated kG-modules.

#### **Definition** (*p*-permutation module)

- A kG-module M is a p-permutation module if for all  $P \in s_p(G)$ ,  $\operatorname{res}_P^G M$  is a permutation module. Equivalently, M is a direct summand of a permutation module.
- **\blacksquare** kG**triv** is the category of p-permutation modules.

### **Example**

- $\blacksquare \ \, \text{If} \,\, p + |G| \text{,} \,\, {_{kG}} \text{triv} = {_{kG}} \text{mod}.$
- lacksquare If G is a p-group, p-permutation modules are permutation modules.

#### Theorem (Balmer, Gallauer '22)

$$K^b({}_{kG}\mathsf{triv})/K^b_{ac}({}_{kG}\mathsf{triv}) \cong D^b({}_{kG}\mathsf{mod}).$$

#### **Definition (Brauer construction)**

■ Given  $M \in {}_{kG}$ mod and  $P, Q \in s_p(G)$  with  $Q < P \le G$ , the trace map  $\operatorname{tr}_{Q}^{P}: M^{Q} \to M^{P}$  is

$$\operatorname{tr}_Q^P(m) = \sum_{p \in [P/Q]} p \cdot m.$$

Computing  $\mathcal{E}_{I_n}(G)$ 

• Given any p-subgroup  $P \leq G$ , the Brauer construction is the additive functor  $-(P): {}_{kG}\mathbf{mod} \rightarrow {}_{k[N_G(P)/P]}\mathbf{mod}$  induced by:

$$M(P) \coloneqq M^P / \sum_{Q < P} \operatorname{tr}_Q^P M^Q.$$

#### **Example**

If X is a G-set, then  $(k[X])(P) \cong k[X^P]$  as  $k[N_G(P)/P]$ -modules.

The Brauer construction is very well-behaved with p-permutation modules. It is responsible for many "local-to-global" phenomena.

### **Properties**

0000

Let  $M, N \in {}_{kG}$ triv.

- $M(P) \in {}_{k[N_G(P)/P]}$ triv.
- $M(P) \otimes_k N(P) \cong (M \otimes_k N)(P)$  for all  $P \in s_p(G)$ .
- $M(P)^* \cong M^*(P)$  for all  $P \in s_p(G)$ .
- $f: M \to N$  is split injective (resp. surjective) if and only if  $f(P): M(P) \to N(P)$  is injective (resp. surjective) for all  $P \in s_P(G)$ .

...and many more, but the complete list does not fit within the margins of this talk.

#### **Definition (Endotrivial complexes)**

■ A bounded chain complex  $C \in Ch^b({}_{kG}\mathbf{triv})$  is endotrivial if

$$\operatorname{End}_k(C) \cong C^* \otimes_k C \simeq k[0],$$

i.e.  $C^* \otimes_k C \cong k \oplus D$  for some contractible chain complex D.

Let  $\mathcal{E}_k(G)$  denote the set of homotopy classes of endotrivial complexes.  $(\mathcal{E}_k(G), \otimes_k)$  forms an abelian group.

**Side note:** another plausible generalization of endotriviality is complexes C for which  $C^* \otimes_k C \simeq k$  in  $K^b({}_{kG}\mathbf{triv})$ .

### Theorem (M.)

Let  $C \in Ch^b({}_{kG}\mathbf{triv})$ . The following are equivalent:

- C is endotrivial.
- For every  $P \in s_P(G)$ , C(P) has nonzero homology in exactly one degree, with that homology having k-dimension 1.

Computing  $\mathcal{E}_{I_n}(G)$ 

Proof: (sketch)

 $(\Longrightarrow)$ : Let C be endotrivial and P a p-subgroup of G. Then properties of the Brauer construction imply

$$(C(P))^* \otimes_k C(P) \cong (C^* \otimes_k C)(P) \simeq k(P) \cong k.$$

The Künneth formula implies the rest.

 $(\longleftarrow)$ : Suppose for all p-subgroups P, C(P) has nonzero homology in exactly one degree with k-dimension 1. Then the Künneth formula and properties of the Brauer quotient imply that

$$H_0((C^* \otimes_k C)(P)) \cong k,$$

and  $(C^* \otimes_k C)(P)$  is acyclic at all other degrees. Denote the differentials of  $C^* \otimes_k C$  by  $\{d_i\}$ .

- If C has length n, then by homology,  $d_{n-1}(P)$  is injective for all p-subgroups P, hence split injective.
- Similarly,  $d_{-n+2}(P)$  is surjective for all p-subgroups P, hence split surjective.

Thus  $C^*\otimes_k C\simeq D$ , for some complex D with two fewer nonzero terms. An inductive argument shaves down D until one nonzero degree remains, and we are done.

**Preliminaries** 

**Observe:** for any p-subgroup  $P \leq G$ , the Brauer construction induces a group homomorphism  $-(P): \mathcal{E}_k(G) \to \mathcal{E}_k(N_G(P)/P)$ .

Computing  $\mathcal{E}_{I_n}(G)$ 

#### **Definition (h-marks)**

If C is an endotrivial complex, let h(C) denote the degree in which C has nontrivial homology. If  $P \in s_p(G)$ , say h(C(P)) is the h-mark of C at P.

Question: How much do "local" homological properties, like the h-marks, determine the structure of an endotrivial complex?

**Answer:** Pretty much completely.

### Theorem (M.)

$$\epsilon : \mathcal{E}_k(G) \to \left(\prod_{P \in s_p(G)} \mathbb{Z}\right)^G$$

$$[C] \mapsto (h(C(P)))_{P \in s_p(G)}$$

Computing  $\mathcal{E}_{I_n}(G)$ 

is a group homomorphism, with kernel the torsion subgroup of  $\mathcal{E}_k(G)$ ,

$$\{k_{\omega}[0] \mid \omega \in \operatorname{Hom}(G, k^{\times})\}.$$

In particular,  $\mathcal{E}_k(G)$  is finitely generated with  $\mathbb{Z}$ -rank bounded by the number of conjugacy classes of p-subgroups.

Proof idea: similar to the previous proof, shave off contractible terms.

Why require p-permutation modules? (besides their friendliness)

#### Theorem (M.)

Let C be an endotrivial complex of kG-modules. Set

$$\Delta G = \{(g,g) \in G \times G \mid g \in G\}$$

and identify G with  $\Delta G$ .  $\operatorname{ind}_{\Delta G}^{G \times G} C$ , regarded as a chain complex of (kG, kG)-bimodules, is a splendid Rickard autoequivalence of kG.

#### Corollary (M.)

Let  $(K, \mathcal{O}, k)$  be a p-modular system large enough for G, and let C be an endotrivial complex of kG-modules. There exists a unique (up to iso.) endotrivial complex  $\hat{C}$  of  $\mathcal{O}G$ -modules such that  $k \otimes_{\mathcal{O}} \hat{C} \cong C$ .

One approach we take uses ideas from Bouc's theory of biset functors.

#### **Definition (Faithful constituents)**

Let  $s_p^{\triangleleft}(G)$  denote the set of normal p-subgroups of G. The faithful constituent of  $\mathcal{E}_k(G)$ , denoted  $\partial \mathcal{E}_k(G)$ , is

0000

$$\partial \mathcal{E}_k(G) = \bigcap_{1 < P \in s_p^{\triangleleft}(G)} \ker(-)(P).$$

$$\partial \mathcal{E}_k(G) \leq \mathcal{E}_k(G)$$
.

Elements of  $\partial \mathcal{E}_k(G)$  have nonzero h-marks only at p-subgroups of G which do not contain a nontrivial normal subgroup of G.

**Preliminaries** 

**Preliminaries** 

$$\prod_{P \in s_p^{\underline{d}}(G)} \partial \mathcal{E}_k(G/P) \to \mathcal{E}_k(G)$$

$$([C_P])_P \mapsto \bigotimes_{P \in s_p^{\underline{d}}(G)} \inf_{G/P} [C_P]$$

0000

is an isomorphism.

**Strategy:** Determine  $\partial \mathcal{E}_k(G)$  to inductively build up  $\mathcal{E}_k(G)$ .

#### Determining $\mathcal{E}_k(G)$ for abelian groups:

■ Since every subgroup is normal,  $\operatorname{rk}_{\mathbb{Z}} \partial \mathcal{E}_k(G) \in \{0,1\}$ , corresponding to the h-mark at 1.

0000

■ If G has p-rank 0,

$$\partial \mathcal{E}_k(G) = \mathcal{E}_k(G) \cong \{k_{\omega}[i] \mid \omega \in \text{Hom}(G, k^{\times}), i \in \mathbb{Z}\}.$$

- If G has p-rank 1, there exists a periodic resolution of the trivial kG-module k by projectives  $C \to k$ . Truncating such a resolution appropriately gives a faithful endotrivial complex and generates  $\partial \mathcal{E}_k(G)$ .
- We can show  $\partial \mathcal{E}_k(G) = 0$  when G has p-rank > 1 using that:
  - the trivial kG-module has periodic cohomology if and only if G has p-rank 1.
  - a theorem of Bouc which gives a local condition for when a complex of p-permutation modules is homotopy equivalent to a complex of projectives.

**Preliminaries** 

## Let G be an abelian group. Let $s_p^{(0,1)}(G)$ denote the set of all p-subgroups of G for which G/P has p-rank 0 or 1. Then,

0000

$$\mathcal{E}_k(G) \cong \prod_{P \in s_p^{(0,1)}(G)} \partial \mathcal{E}_k(G/P),$$

with a generating set described by the previous slide.

#### **Example**

Other classes of groups for which we have determined generators for  $\mathcal{E}_k(G)$ :

- Dihedral groups
- Generalized quaternion groups
- $\blacksquare$  p-nilpotent groups with Sylow p-subgroup one of the above

Downside: explicitly constructing faithful endotrivial complexes is difficult. It's easier to prove they can't exist.

#### **Definition (Trivial source ring)**

- The trivial source ring T(kG) is the Grothendieck group of kG triv with respect to split exact sequences. It forms a ring via  $\otimes_k$ .
- The orthogonal unit group  $O(T(kG)) \leq T(kG)^{\times}$  is the subgroup consisting of units  $u \in T(kG)^{\times}$  for which  $u^{-1} = u^{*}$ .

Let  $C \in Ch^b({}_{kG}\mathbf{triv})$ . The Lefschetz invariant of C is

$$\Lambda(C) = \sum_{i \in \mathbb{Z}} (-1)^i [C_i] \in T(kG).$$

#### **Proposition**

Let  $C \in Ch^b({}_{kG}\mathbf{triv})$  be an endotrivial complex. Then  $\Lambda(C) \in O(T(kG))$ .

**Question:** What is the cokernel of  $\Lambda(-): \mathcal{E}_k(G) \to O(T(kG))$ ?

Strategy: Consider local homology.

(Boltje & Carman '23) showed that every  $u \in O(T(kG))$  can be uniquely expressed as a signed character tuple  $(\epsilon_P \cdot \rho_P)_{P \in s_n(G)}$ , with

- $\epsilon_P \in \{\pm 1\}$
- $\rho_P \in \text{Hom}(N_G(P)/P, k^{\times})$ , i.e. a degree 1 character.

 $\epsilon_P \cdot \rho_P$  is the image of  $u(P) \in O(T(k[N_G(P)/P]))$  in the Brauer character ring  $R_k(N_G(P)/P)$ , i.e. the Grothendieck group of  $k_G$  mod with respect to short exact sequences.

**Preliminaries** 

Computing  $\mathcal{E}_{I_n}(G)$ 

Given a kG-module M, let  ${}^FM$  be the kG-module which results by twisting by F.

#### **Example**

**Preliminaries** 

If  $\omega \in \text{Hom}(G, k^{\times})$ , then  ${}^Fk_{F \circ \omega} \cong k_{\omega}$  as kG-modules.

### Theorem (M.)

**Preliminaries** 

Let  $u \in O(T(kG))$  have a corresponding character tuple  $(\rho_P)$ , and suppose  $\rho_1$ is the trivial character. If u has an endotrivial lift  $C \in \mathcal{E}_k(G)$ , then  $\rho_P = {}^F \rho_P$ for all  $P \in s_n(G)$ . Equivalently, all  $\rho_P$  are  $\mathbb{F}_n^{\times}$ -valued.

Computing  $\mathcal{E}_{I_n}(G)$ 

Proof idea: Observe that twisting an endotrivial complex by F preserves h-marks and acts pointwise on local homology. Then cook up a contradiction using the characterization of  $\ker \epsilon$ .

This easily extends to the other orthogonal units by twisting by appropriate 1-dimensionals

**Preliminaries** 

- If p = 2, the only orthogonal units which can lift arise from units of Burnside rings and ± 1-dimensionals.
- If p > 2 and all primes q which divide |G| satisfy  $q \nmid p 1$ , the only units which lift are ± 1-dimensionals.

Computing  $\mathcal{E}_{I_n}(G)$ 

#### Final remarks and ongoing work:

- Determining the cokernel of  $\Lambda(-)$  for 2-groups in general seems very hard.
- Tensor induction seems like it should preserve endotriviality, but it generally doesn't :(
- If  $S \in \operatorname{Syl}_n(G)$ ,  $\operatorname{res}_S^G : \mathcal{E}_k(G) \to \mathcal{E}_k(S)$  does not lose any h-mark information! Can we characterize the cokernel? Yes for p-nilpotent groups. (this is analogous to work of Barsotti & Carman for Burnside rings)
- How many of these ideas can be generalized to a a "stable w.r.t.  $\mathcal{X}$ -projectives" endotrivial setting?
- Thank you for your time!! sam :)