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Conventions & Notation:

G is a finite group.

p is a prime.

k is a field of characteristic p.

sp(G) denotes the set of all p-subgroups of G.

All kG-modules are finitely generated.

kGmod denotes the category of all finitely generated kG-modules.
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Definition (p-permutation module)

A kG-module M is a p-permutation module if for all P ∈ sp(G), resGP M
is a permutation module. Equivalently, M is a direct summand of a
permutation module.

kGtriv is the category of p-permutation modules.

Example

If p ∤ ∣G∣, kGtriv = kGmod.

If G is a p-group, p-permutation modules are permutation modules.

Theorem (Balmer, Gallauer ’22)

Kb(kGtriv)/Kb
ac(kGtriv) ≅Db(kGmod).

Sam K. Miller University of California, Santa Cruz
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Definition (Brauer construction)

Given M ∈ kGmod and P,Q ∈ sp(G) with Q < P ≤ G, the trace map
trPQ ∶MQ →MP is

trPQ(m) = ∑
p∈[P /Q]

p ⋅m.

Given any p-subgroup P ≤ G, the Brauer construction is the additive
functor −(P ) ∶ kGmod→ k[NG(P )/P ]mod induced by:

M(P ) ∶=MP / ∑
Q<P

trPQM
Q.

Example

If X is a G-set, then (k[X])(P ) ≅ k[XP ] as k[NG(P )/P ]-modules.

Sam K. Miller University of California, Santa Cruz
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The Brauer construction is very well-behaved with p-permutation modules. It is
responsible for many “local-to-global” phenomena.

Properties

Let M,N ∈ kGtriv.

M(P ) ∈ k[NG(P )/P ]triv.

M(P ) ⊗k N(P ) ≅ (M ⊗k N)(P ) for all P ∈ sp(G).

M(P )∗ ≅M∗(P ) for all P ∈ sp(G).

f ∶M → N is split injective (resp. surjective) if and only if
f(P ) ∶M(P ) → N(P ) is injective (resp. surjective) for all P ∈ sP (G).

...and many more, but the complete list does not fit within the margins of this
talk.

Sam K. Miller University of California, Santa Cruz
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Definition (Endotrivial complexes)

A bounded chain complex C ∈ Chb(kGtriv) is endotrivial if

Endk(C) ≅ C∗ ⊗k C ≃ k[0],

i.e. C∗ ⊗k C ≅ k ⊕D for some contractible chain complex D.

Let Ek(G) denote the set of homotopy classes of endotrivial complexes.
(Ek(G),⊗k) forms an abelian group.

Side note: another plausible generalization of endotriviality is complexes C for
which C∗ ⊗k C ≃ k in Kb(kGtriv).

Sam K. Miller University of California, Santa Cruz
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Theorem (M.)

Let C ∈ Chb(kGtriv). The following are equivalent:

C is endotrivial.

For every P ∈ sP (G), C(P ) has nonzero homology in exactly one degree,
with that homology having k-dimension 1.

Proof: (sketch)
( Ô⇒ ) ∶ Let C be endotrivial and P a p-subgroup of G. Then properties of
the Brauer construction imply

(C(P ))∗ ⊗k C(P ) ≅ (C∗ ⊗k C)(P ) ≃ k(P ) ≅ k.

The Künneth formula implies the rest.

Sam K. Miller University of California, Santa Cruz

Endotrivial complexes



Preliminaries Endotrivial complexes Computing Ek(G) The trivial source ring

( ⇐Ô ) ∶ Suppose for all p-subgroups P , C(P ) has nonzero homology in
exactly one degree with k-dimension 1. Then the Künneth formula and
properties of the Brauer quotient imply that

H0((C∗ ⊗k C)(P )) ≅ k,

and (C∗ ⊗k C)(P ) is acyclic at all other degrees. Denote the differentials of
C∗ ⊗k C by {di}.

If C has length n, then by homology, dn−1(P ) is injective for all
p-subgroups P , hence split injective.

Similarly, d−n+2(P ) is surjective for all p-subgroups P , hence split
surjective.

Thus C∗ ⊗k C ≃D, for some complex D with two fewer nonzero terms. An
inductive argument shaves down D until one nonzero degree remains, and we
are done.

Sam K. Miller University of California, Santa Cruz
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Observe: for any p-subgroup P ≤ G, the Brauer construction induces a group
homomorphism −(P ) ∶ Ek(G) → Ek(NG(P )/P ).

Definition (h-marks)

If C is an endotrivial complex, let h(C) denote the degree in which C has
nontrivial homology. If P ∈ sp(G), say h(C(P )) is the h-mark of C at P .

Question: How much do “local” homological properties, like the h-marks,
determine the structure of an endotrivial complex?

Answer: Pretty much completely.

Sam K. Miller University of California, Santa Cruz
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Theorem (M.)

ε ∶ Ek(G) →
⎛
⎝ ∏
P ∈sp(G)

Z
⎞
⎠

G

[C] ↦ (h(C(P )))P ∈sp(G)

is a group homomorphism, with kernel the torsion subgroup of Ek(G),

{kω[0] ∣ ω ∈ Hom(G,k×)}.

In particular, Ek(G) is finitely generated with Z-rank bounded by the number
of conjugacy classes of p-subgroups.

Proof idea: similar to the previous proof, shave off contractible terms.

Sam K. Miller University of California, Santa Cruz
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Why require p-permutation modules? (besides their friendliness)

Theorem (M.)

Let C be an endotrivial complex of kG-modules. Set

∆G = {(g, g) ∈ G ×G ∣ g ∈ G}

and identify G with ∆G. indG×G
∆G C, regarded as a chain complex of

(kG, kG)-bimodules, is a splendid Rickard autoequivalence of kG.

Corollary (M.)

Let (K,O, k) be a p-modular system large enough for G, and let C be an
endotrivial complex of kG-modules. There exists a unique (up to iso.)
endotrivial complex Ĉ of OG-modules such that k ⊗O Ĉ ≅ C.

Sam K. Miller University of California, Santa Cruz
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Question: How can we go about determining generators of Ek(G)?
One approach we take uses ideas from Bouc’s theory of biset functors.

Definition (Faithful constituents)

Let s⊴p(G) denote the set of normal p-subgroups of G. The faithful constituent
of Ek(G), denoted ∂Ek(G), is

∂Ek(G) = ⋂
1<P ∈s⊴p(G)

ker(−)(P ).

∂Ek(G) ≤ Ek(G).

Elements of ∂Ek(G) have nonzero h-marks only at p-subgroups of G which do
not contain a nontrivial normal subgroup of G.

Sam K. Miller University of California, Santa Cruz
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Theorem

∏
P ∈s⊴p(G)

∂Ek(G/P ) → Ek(G)

([CP ])P ↦ ⊗
P ∈s⊴p(G)

infGG/P [CP ]

is an isomorphism.

Strategy: Determine ∂Ek(G) to inductively build up Ek(G).

Sam K. Miller University of California, Santa Cruz
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Determining Ek(G) for abelian groups:

Since every subgroup is normal, rkZ ∂Ek(G) ∈ {0,1}, corresponding to the
h-mark at 1.

If G has p-rank 0,

∂Ek(G) = Ek(G) ≅ {kω[i] ∣ ω ∈ Hom(G,k×), i ∈ Z}.

If G has p-rank 1, there exists a periodic resolution of the trivial
kG-module k by projectives C → k. Truncating such a resolution
appropriately gives a faithful endotrivial complex and generates ∂Ek(G).

We can show ∂Ek(G) = 0 when G has p-rank > 1 using that:
the trivial kG-module has periodic cohomology if and only if G has p-rank 1.
a theorem of Bouc which gives a local condition for when a complex of
p-permutation modules is homotopy equivalent to a complex of projectives.

Sam K. Miller University of California, Santa Cruz
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Theorem (M.)

Let G be an abelian group. Let s(0,1)p (G) denote the set of all p-subgroups of
G for which G/P has p-rank 0 or 1. Then,

Ek(G) ≅ ∏
P ∈s(0,1)p (G)

∂Ek(G/P ),

with a generating set described by the previous slide.

Example

Other classes of groups for which we have determined generators for Ek(G):

Dihedral groups

Generalized quaternion groups

p-nilpotent groups with Sylow p-subgroup one of the above

Downside: explicitly constructing faithful endotrivial complexes is difficult. It’s
easier to prove they can’t exist.

Sam K. Miller University of California, Santa Cruz
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Definition (Trivial source ring)

The trivial source ring T (kG) is the Grothendieck group of kGtriv with
respect to split exact sequences. It forms a ring via ⊗k.

The orthogonal unit group O(T (kG)) ≤ T (kG)× is the subgroup
consisting of units u ∈ T (kG)× for which u−1 = u∗.

Let C ∈ Chb(kGtriv). The Lefschetz invariant of C is

Λ(C) = ∑
i∈Z

(−1)i[Ci] ∈ T (kG).

Proposition

Let C ∈ Chb(kGtriv) be an endotrivial complex. Then Λ(C) ∈ O(T (kG)).

Sam K. Miller University of California, Santa Cruz
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Question: What is the cokernel of Λ(−) ∶ Ek(G) → O(T (kG))?

Strategy: Consider local homology.

(Boltje & Carman ’23) showed that every u ∈ O(T (kG)) can be uniquely
expressed as a signed character tuple (εP ⋅ ρP )P ∈sp(G), with

εP ∈ {±1}
ρP ∈ Hom(NG(P )/P, k×), i.e. a degree 1 character.

εP ⋅ ρP is the image of u(P ) ∈ O(T (k[NG(P )/P ])) in the Brauer character
ring Rk(NG(P )/P ), i.e. the Grothendieck group of kGmod with respect to
short exact sequences.

Sam K. Miller University of California, Santa Cruz
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The Frobenius automorphism F ∶ k → k, x↦ xp, induces a ring automorphism
on kG, hence an exact endofunctor on kGmod and kGtriv. This induces group
automorphisms on O(T (kG)) and Ek(G).

Given a kG-module M , let FM be the kG-module which results by twisting by
F .

Example

If ω ∈ Hom(G,k×), then F kF○ω ≅ kω as kG-modules.

Sam K. Miller University of California, Santa Cruz

Endotrivial complexes



Preliminaries Endotrivial complexes Computing Ek(G) The trivial source ring

It turns out endotrivial complexes have a F -stability condition!

Theorem (M.)

Let u ∈ O(T (kG)) have a corresponding character tuple (ρP ), and suppose ρ1

is the trivial character. If u has an endotrivial lift C ∈ Ek(G), then ρP = F ρP
for all P ∈ sp(G). Equivalently, all ρP are F×p-valued.

Proof idea: Observe that twisting an endotrivial complex by F preserves
h-marks and acts pointwise on local homology. Then cook up a contradiction
using the characterization of ker ε.

This easily extends to the other orthogonal units by twisting by appropriate
1-dimensionals.

Sam K. Miller University of California, Santa Cruz
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Consequences:

If p = 2, the only orthogonal units which can lift arise from units of
Burnside rings and ± 1-dimensionals.

If p > 2 and all primes q which divide ∣G∣ satisfy q ∤ p − 1, the only units
which lift are ± 1-dimensionals.

Final remarks and ongoing work:

Determining the cokernel of Λ(−) for 2-groups in general seems very hard.

Tensor induction seems like it should preserve endotriviality, but it
generally doesn’t :(

If S ∈ Sylp(G), resGS ∶ Ek(G) → Ek(S) does not lose any h-mark
information! Can we characterize the cokernel? Yes for p-nilpotent groups.
(this is analogous to work of Barsotti & Carman for Burnside rings)

How many of these ideas can be generalized to a a “stable w.r.t.
X -projectives” endotrivial setting?

Thank you for your time!! - sam :)
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