Mathematical interests

  • Non/commutative tensor-triangular geometry
  • Modular representation theory of finite groups
  • Intersections between representation theory and tensor-triangular geometry
  • Invertible objects/Picard groups
  • Permutation modules

Publications and preprints

Title Co-Authors Journal arXiv
13. A semisimple subcategory of Khovanov’s Heisenberg category   Submitted 2512.13968
12. Re-framing the classification of ideals in noncommutative tensor-triangular geometry Timothy De Deyn Submitted 2510.23767
11. Permutation twisted cohomology, remixed     2509.00954
10. The Euler characteristic of an endotrivial complex Nadia Mazza Submitted 2508.07404
9. On functoriality and the tensor product property in noncommutative tensor-triangular geometry   Submitted 2505.01899
8. On endosplit $p$-permutation resolutions and Broue’s conjecture for $p$-solvable groups   Submitted 2408.04094
7. Galois descent of splendid Rickard equivalences between blocks of $p$-nilpotent groups   Proc. Amer. Math. Soc. 153 (5), 1893-1902 (2025) 2405.16061
6. The classification of endotrivial complexes   Adv. Math. 478, 110414 (2025) 2403.04088
5. Relatively endotrivial complexes   J. Pure Appl. Algebra, 229 (2), 107867 (2025) 2402.08042
4. Brauer pairs for splendid Rickard equivalences Jadyn V. Breland J. Algebra, 691, 694-729 (2026) 2312.10258
3. Endotrivial complexes   J. Algebra, 650, 173-218 (2024) 2309.12138
2. A proof of the optimal leapfrogging conjecture Arthur T. Benjamin Involve, 18 (1), 105–122 (2025) 2110.08319
1. Challenging knight’s tours Arthur T. Benjamin Math Horizons, 25 (3), 18-21 (2018)  

(Listed by date of first upload to arXiv)


Theses

TItle Advisor Link
2. Permutation Modules and Endotrivial Complexes Robert Boltje Ph.D. Thesis, UC Santa Cruz (2025)
1. The Combinatorial Polynomial Hirsch Conjecture Mohamed Omar Harvey Mudd College Senior Theses, 109 (2017)